Selected Publications

(Full publication list can be found at Google scholar, DBLP, Research Map)

  • TabularMark: Watermarking Tabular Datasets for Machine Learning
    Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang Chu, Yang Cao, Li Xiong.
    ACM CCS 2024

  • PreCurious: How Innocent Pre-Trained Language Models Turn into Privacy Traps.
    Ruixuan Liu, Tianhao Wang, Yang Cao, Li Xiong.
    ACM CCS 2024 [arXiv]

  • ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy.
    Fumiyuki Kato, Li Xiong, Shun Takagi, Yang Cao, Masatoshi Yoshikawa.
    VLDB 2024 [arXiv]

  • HRNet: Differentially Private Hierarchical and Multi-Resolution Network for Human Mobility Data Synthesization.
    Shun Takagi, Li Xiong, Fumiyuki Kato, Yang Cao, Masatoshi Yoshikawa.
    VLDB 2024 [arXiv]

  • Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning.
    Saber Malekmohammadi, Yaoliang Yu, Yang Cao.
    ICML 2024 [arXiv]

  • Optimal Graph Learning and Nuclear Norm Maximization for Deep Cross-Domain Robust Label Propagation.
    Wei Wang, Hanyang Li, Ke Shi, Chao Huang, Yang Cao, Cong Wang, Xiaochun Cao.
    IJCAI 2024

  • Federated Heterogeneous Graph Neural Network for Privacy-preserving Recommendation.
    Bo Yan, Yang Cao, Haoyu Wang, Wenchuan Yang, Junping Du, Chuan Shi
    WWW 2024

  • A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility.
    E Chen, Yang Cao, Yifei Ge.
    AAAI 2024

  • CARGO: Crypto-Assisted Differentially Private Triangle Counting without Trusted Servers.
    Shang Liu, Yang Cao, Takao Murakami, Jinfei Liu, Masatoshi Yoshikawa.
    ICDE 2024 [arXiv] [Code]

  • OLIVE: Oblivious Federated Learning on Trusted Execution Environment Against the Risk of Sparsification.
    Fumiyuki Kato, Yang Cao, Masatoshi Yoshikawa.
    VLDB 2023 [arXiv] [Code] [Slides]

  • Secure Shapley Value for Cross-Silo Federated Learning.
    Shuyuan Zheng, Yang Cao, Masatoshi Yoshikawa.
    VLDB 2023 [arXiv] [Code] [Slides]

  • Equitable Data Valuation Meets the Right to Be Forgotten in Model Markets.
    Haocheng Xia, Jinfei Liu, Jian Lou, Zhan Qin, Kui Ren, Yang Cao, Li Xiong.
    VLDB 2023

  • PrivateRec: Differentially Private Model Training and Online Serving for Federated News Recommendation.
    Ruixuan Liu, Yang Cao, Yanlin Wang, Lingjuan Lyu, Yun Chen, Hong Chen.
    KDD 2023 [arXiv]

  • HDPView: Differentially Private Materialized View for Exploring High Dimensional Relational Data.
    Fumiyuki Kato, Tsubasa Takahashi, Shun Takagi, Yang Cao, Seng Pei Liew, Masatoshi Yoshikawa.
    VLDB 2022 [arXiv] [Code]

  • Network Shuffling: Privacy Amplification via Random Walks.
    Seng Pei Liew, Tsubasa Takahashi, Shun Takagi, Fumiyuki Kato, Yang Cao, Masatoshi Yoshikawa.
    SIGMOD 2022 [arXiv]

  • FL-Market: Trading Private Models in Federated Learning.
    Shuyuan Zheng, Yang Cao, Masatoshi Yoshikawa, Huizhong Li, Qiang Yan
    IEEE BigData 2022 Selected as a Top-10 Best Paper [arXiv] [Slides] [Code]

  • FLAME: Differentially Private Federated Learning in the Shuffle Model.
    Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, Masatoshi Yoshikawa.
    AAAI 2021 [arXiv] [Slides] [Code]

  • P3GM: Private High-Dimensional Data Release via Privacy Preserving Phased Generative Model.
    Shun Takagi, Tsubasa Takahashi, Yang Cao, Masatoshi Yoshikawa.
    IEEE ICDE 2020 [arXiv]

  • PGLP: Customizable and Rigorous Location Privacy through Policy Graph.
    Yang Cao, Yonghui Xiao, Shun Takagi, Li Xiong, Masatoshi Yoshikawa, Yilin Shen, Jinfei Liu, Hongxia Jin, Xiaofeng Xu.
    ESORICS 2020 [arXiv] [Code] [Slides]

  • PCKV: Locally Differentially Private Correlated Key-Value Data Collection with Optimized Utility.
    Xiaolan Gu, Ming Li, Yueqiang Cheng, Li Xiong and Yang Cao.
    USENIX Security 2020 [arXiv] [Slides] [Youtube]

  • FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection.
    Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, Hong Chen.
    DASFAA 2020 [arXiv] [Slides] [PDF]

  • Voice-Indistinguishability: Protecting Voiceprint in Privacy Preserving Speech Data Release.
    Yaowei Han, Sheng Li, Yang Cao, Qiang Ma, Masatoshi Yoshikawa.
    IEEE ICME 2020 Selected as a Top-10 Best Paper [arXiv] [Slides] [Code]

  • Providing Input-Discriminative Protection for Local Differential Privacy.
    Xiaolan Gu, Ming Li, Li Xiong and Yang Cao.
    IEEE ICDE 2020 [arXiv] [Slides]

  • Protecting Spatiotemporal Event Privacy in Continuous Location-Based Services.
    Yang Cao, Yonghui Xiao, Li Xiong, Liquan Bai and Masatoshi Yoshikawa.
    IEEE TKDE 2019 [arXiv] [IEEE]

  • Quantifying Differential Privacy in Continuous Data Release under Temporal Correlations.
    Yang Cao, Masatoshi Yoshikawa, Yonghui Xiao, Li Xiong.
    IEEE TKDE 2018, the special issue on Best of ICDE 2017. [Paper] [Code] [Slides] [Poster]