Selected Publications
(Full publication list can be found at
Google scholar,
DBLP,
Research Map)
-
TabularMark: Watermarking Tabular Datasets for Machine Learning
Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang Chu, Yang Cao, Li Xiong.
ACM CCS 2024
-
PreCurious: How Innocent Pre-Trained Language Models Turn into Privacy Traps.
Ruixuan Liu, Tianhao Wang, Yang Cao, Li Xiong.
ACM CCS 2024
[arXiv]
-
ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy.
Fumiyuki Kato, Li Xiong, Shun Takagi, Yang Cao, Masatoshi Yoshikawa.
VLDB 2024
[arXiv]
-
HRNet: Differentially Private Hierarchical and Multi-Resolution Network for Human Mobility Data Synthesization.
Shun Takagi, Li Xiong, Fumiyuki Kato, Yang Cao, Masatoshi Yoshikawa.
VLDB 2024
[arXiv]
-
Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning.
Saber Malekmohammadi, Yaoliang Yu, Yang Cao.
ICML 2024
[arXiv]
-
Optimal Graph Learning and Nuclear Norm Maximization for Deep Cross-Domain Robust Label Propagation.
Wei Wang, Hanyang Li, Ke Shi, Chao Huang, Yang Cao, Cong Wang, Xiaochun Cao.
IJCAI 2024
-
Federated Heterogeneous Graph Neural Network for Privacy-preserving Recommendation.
Bo Yan, Yang Cao, Haoyu Wang, Wenchuan Yang, Junping Du, Chuan Shi
WWW 2024
-
A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility.
E Chen, Yang Cao, Yifei Ge.
AAAI 2024
-
CARGO: Crypto-Assisted Differentially Private Triangle Counting without Trusted Servers.
Shang Liu, Yang Cao, Takao Murakami, Jinfei Liu, Masatoshi Yoshikawa.
ICDE 2024
[arXiv]
[Code]
-
OLIVE: Oblivious Federated Learning on Trusted Execution Environment Against the Risk of Sparsification.
Fumiyuki Kato, Yang Cao, Masatoshi Yoshikawa.
VLDB 2023
[arXiv]
[Code]
[Slides]
-
Secure Shapley Value for Cross-Silo Federated Learning.
Shuyuan Zheng, Yang Cao, Masatoshi Yoshikawa.
VLDB 2023
[arXiv]
[Code]
[Slides]
-
Equitable Data Valuation Meets the Right to Be Forgotten in Model Markets.
Haocheng Xia, Jinfei Liu, Jian Lou, Zhan Qin, Kui Ren, Yang Cao, Li Xiong.
VLDB 2023
-
PrivateRec: Differentially Private Model Training and Online Serving for Federated News Recommendation.
Ruixuan Liu, Yang Cao, Yanlin Wang, Lingjuan Lyu, Yun Chen, Hong Chen.
KDD 2023
[arXiv]
-
HDPView: Differentially Private Materialized View for Exploring High Dimensional Relational Data.
Fumiyuki Kato, Tsubasa Takahashi, Shun Takagi, Yang Cao, Seng Pei Liew, Masatoshi Yoshikawa.
VLDB 2022
[arXiv]
[Code]
-
Network Shuffling: Privacy Amplification via Random Walks.
Seng Pei Liew, Tsubasa Takahashi, Shun Takagi, Fumiyuki Kato, Yang Cao, Masatoshi Yoshikawa.
SIGMOD 2022
[arXiv]
-
FL-Market: Trading Private Models in Federated Learning.
Shuyuan Zheng, Yang Cao, Masatoshi Yoshikawa, Huizhong Li, Qiang Yan
IEEE BigData 2022 Selected as a Top-10 Best Paper
[arXiv]
[Slides]
[Code]
-
FLAME: Differentially Private Federated Learning in the Shuffle Model.
Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, Masatoshi Yoshikawa.
AAAI 2021
[arXiv]
[Slides]
[Code]
-
P3GM: Private High-Dimensional Data Release via Privacy Preserving Phased Generative Model.
Shun Takagi, Tsubasa Takahashi, Yang Cao, Masatoshi Yoshikawa.
IEEE ICDE 2020
[arXiv]
-
PGLP: Customizable and Rigorous Location Privacy through Policy Graph.
Yang Cao, Yonghui Xiao, Shun Takagi, Li Xiong, Masatoshi Yoshikawa, Yilin Shen, Jinfei Liu, Hongxia Jin, Xiaofeng Xu.
ESORICS 2020
[arXiv]
[Code]
[Slides]
-
PCKV: Locally Differentially Private Correlated Key-Value Data Collection with Optimized Utility.
Xiaolan Gu, Ming Li, Yueqiang Cheng, Li Xiong and Yang Cao.
USENIX Security 2020
[arXiv]
[Slides]
[Youtube]
-
FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection.
Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, Hong Chen.
DASFAA 2020
[arXiv]
[Slides]
[PDF]
-
Voice-Indistinguishability: Protecting Voiceprint in Privacy Preserving Speech Data Release.
Yaowei Han, Sheng Li, Yang Cao, Qiang Ma, Masatoshi Yoshikawa.
IEEE ICME 2020 Selected as a Top-10 Best Paper
[arXiv]
[Slides]
[Code]
-
Providing Input-Discriminative Protection for Local Differential Privacy.
Xiaolan Gu, Ming Li, Li Xiong and Yang Cao.
IEEE ICDE 2020
[arXiv]
[Slides]
-
Protecting Spatiotemporal Event Privacy in Continuous Location-Based Services.
Yang Cao, Yonghui Xiao, Li Xiong, Liquan Bai and Masatoshi Yoshikawa.
IEEE TKDE 2019
[arXiv]
[IEEE]
-
Quantifying Differential Privacy in Continuous Data Release under Temporal Correlations.
Yang Cao, Masatoshi Yoshikawa, Yonghui Xiao, Li Xiong.
IEEE TKDE 2018, the special issue on Best of ICDE 2017.
[Paper]
[Code]
[Slides]
[Poster]