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I Motivation - Speech Data Release

'Q Speech Data Release

Share speech dataset with the 3rd parties

Eg. Apple collects
speech data for Siri
quality evaluation
process, which they
call grading.
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Everyone who speaks a language, speaks it with an accent. A particular accent es
speak with a different accent from their own, they notice the difference, and they

The speech accent archive is established to uniformly exhibit a large set of speect
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" Motivation - Risks of Speech Data Release

Risks of Speech Data Release

Privacy concern.

. Apple contractors 'regularly hear
* Speech data is personal data. confidential details' on Siri recordings

Workers hear drug deals, medical details and people having sex,
says whistleblower

« Everybody has a unique voiceprint,
which is a kind of biometric identifiers.

 GDPR!1 bans the sharing of biometric
identifiers.

[1] A. Nautsch and et al., “The GDPR & speech data:Reflections of legal and technology communities, firststeps towards a common understanding,” 2019.
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-regularly-hear-confidential-details-on-siri-recordings



" Motivation - Risks of Speech Data Release

Risks of Speech Data Release

Security risks.

« Spoofing attacks to the voice authentication systems
« Reputation attacks ( fake Obama speech!il)

mm) How to protect privacy in speech data release?

[1] S. Suwajanakorn and et al., “Synthesizing obama: learning lip sync from audio,” ACM Transactions on Graphics, 2017.
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" Related Works

|
Voice technology
protection level privacy guarantee

Vocal Tract
[1][2] voice-level ad-hoc Length Normalization
(VTLN)

[3][4] k-anonymity Speech Synthesize

[1] J.Qianand et al., “Hidebehind: Enjoy voice input with voiceprint unclonability and anonymity,” in ACM SenSys 2018.

[2] B. Srivastava and et al., “Evaluating voice conversion-based privacy protection against informed attackers,” arXiv preprint arXiv:1911.03934, 2019.
[3] T.Justinand etal.,, “Speaker deidentification using diphone recognition and speech synthesis,” in FG 2015.

[4] F.Fangandetal.,, “Speaker anonymization using X-vector and neural waveform models,” in 10th ISCA Speech Synthesis Workshop, 2019.

[5] B. Srivastava and et al., “Privacy-Preserving Adversarial Representation Learning in ASR: Reality or lllusion?,” in Interspeech 2019.




" Related Works - Insufficiency of Existing Methods

Existing methods for protecting speech data privacy
(1) Speech2text (2) K-anonymity

However, they are insufficient because
(1) Speech2text
not useful for speech analysis
without any formal privacy guarantee
(2) K-anonymity
based on the assumption of attackers’ knowledge
(= not secure under powerful attackers)
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" Problem Setting
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Privacy-preserving speech data release

We focus on protecting voiceprint, i.e., user voice identity.
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" Contributions

) Voice-Indistinguishability
« The first formal privacy definition for voiceprint, not depend on
attacker's background knowledge.

How to formally define voiceprint privacy?

How to design a mechanism achieving our privacy definition?

:> Voiceprint perturbation mechanism

» Use voiceprint to present user voice identity
* Our mechnism output a anonymized voiceprint

How to implement frameworks for private speech data release?

:> Privacy-preserving speech synthesis

« Synthesize voice record with anonymized voiceprint

12
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" Our Solution - Metric Privacy

How to formally define voiceprint privacy?

Definition of Metric Privacy

SSaEes Perturbation
(s1)
“difference”
at most
d(s1, s2)¢

SRR 2 Perturbation

(s2)

Advantages:
1) Has no assumptions on the attackers’ background knowledge.
2) Privacy loss can be quantified.

the bigger € -> the better utility, the weaker privacy
3) d(s1, s2): distance metric between secrets. 14



" Our Solution - Decision of Secrets

When applying metric privacy, we should decide secrets and distance metric.

- What's the secret?
Voiceprint
- How to represent the voiceprint?

x-vectorltl a widely used speaker space vector.

For example. 512 dimensional

[1.291081 0.9634209 ... 2.59955]

[1] D.Snyder and etal.,, “X-vectors: Robust dnn embeddings for speaker recognition,” inProc. IEEE-ICASSP,2018, pp. 5329-5333.
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" Our Solution - Decision of Distance Metric

When applying metric privacy, we should decide secrets and distance metric.

- How to define the distance metric between voiceprint?

Euclidean distance? X

Can not well represent the distance between two x-vectors

Cosine distance? X

Widely used in speaker recognition but doesn’t satisfy triangle inequality

Angular distance? YES

Also a kind of cosine distance but satisfies triangle inequality
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" Our Solution - Voice-Indistinguishablility

How to formally define voiceprint privacy?
For single user
Voice-Indistinguishability, Voice-Ind

Pr(z|x)
. il
Pr(zlz') —

arccos(cos similarity < z,z' >)

edy(x.x’ )

dy =

n
For multiple users in a speech dataset

Speech Data Release under Voice-Ind

Pr(D|D) < ped(D.D')
Pr(D|D") —

d(D,D') = dx(z,z')

€: privacy budget
privacy-utility tradeoff
bigger € :
(1) weaker privacy
(2) better utility

n: speech database size
larger n:

(1) stronger privacy

-> later, we will verify this
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" Our Solution - Mechanism

How to design a mechanism achieving our privacy definition?
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" Our Solution - Privacy Guarantee

Privacy guarantee of the released private speech database.

Sensitive Speech database Anonymized Speech database
Speaker Speech Data Attr Speaker Speech Data Attr
A Record 1 Our A Record 1 (with C's voiceprint) ...
Method |
B Record 2 > B Record 2 (with A's voiceprint) ...
C Record 3 C  Record 3 (with B's voiceprint) e
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" Our Solution

How to implement frameworks for private speech data release?

Raw utterance Raw utterance

Voiceprint (1) (1) Voiceprint
extraction 2 v v v extraction
(unprotected) Fbank x-vector Fbank X-vector (unprotected)
Pr(.)tect. Perturb ii}:::::::::::t'_l
voiceprint | .11 Perturbed | 0) l
"I Utterance |
@ J' bemmee- L‘_‘_‘_‘_‘_‘)' Perturbed Pr(_)teCt int
i : voiceprin
Synthesize model Re-train Synthesize model %
Reconstruct @ ‘1, Mel-spec (offline) @ l, Mel-spec
waveform Waveform vocoder Waveform vocoder Reconstruct
(protected) waveform
@ \1' @ ‘1' (protected)
Protected Utterance Protected Utterance

(a) Feature-level

(b) Model-level
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" Experiment

Verify the utility-privacy tradeoff of Voice-Indistinguishability.

 How does the privacy parameter € affect the privacy and utility?

 How does the database size n affect the privacy?
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" Experiment

(Objective evaluation. )

Protected speech data with bigger € -> (1) weaker privacy (2) better utility
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lower MSE -> weaker privacy
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" Experiment

(Objective evaluation. )

Protected speech data with larger n -> (1) stronger privacy
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MSE: the difference before and after modification
lower MSE -> weaker privacy

(PLDA) ACC: the accuracy of speaker verification
higher ACC -> weaker privacy



" Experiment

(Subjective evaluation. ) 15 speakers

Protected speech data with bigger € -> (1) weaker privacy (2) better utility

Dissimilarity

B | ) Dissimilarity: the voice’s differences
34f .o = between and after the modification

lower Dissimilarity -> weaker privacy

(]

Naturalness: the naturalness of sounds that
closely resemble the human voice

0.31 3 10

higher Naturalness -> better utility

Dissimilarity vs. € Naturalness vs. €
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" Conclusion and Future work

Conclusion:

» Voice-Ind is the first formal privacy notion for voiceprint privacy.
* Our mechanism serves as a primitive to achieve voice-ind.
* Our end-to-end frameworks provide a good privacy-utility trade-off.

Future Works:

« Apply Voice-ind in Virtual Assistant, speech data processing, etc.
« Extend Voice-Ind for speech content privacy.
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