PCKV: Locally Differentially Private Correlated Key-Value Data Collection with Optimized Utility

Xiaolan Gu*, Ming Li*, Yueqiang Cheng**, Li Xiong# and Yang Cao†

* University of Arizona ** Baidu Security # Emory University † Kyoto University

USENIX Security Symposium, August 2020

Overview

- Background of LDP
- Problem Statement and Existing Mechanism
- Our Framework: PCKV
- Experiments
- Conclusion

Background

 Companies are collecting our private data Apple, Yahoo, Uber, …)

 \bullet

. . .

- However, privacy concerns arise
- Possible solution: locally private data collection model

• Companies are collecting our private data to provide better services (Google, Facebook,

Yahoo: massive data breaches impacted 3 billion user account, 2013 Facebook: 267 million users' data has reportedly been leaked, 2019

Local Differential Privacy (LDP) [Duchi et al, FOCS' 13]

and any output y $\Pr(M)$

- x, x': the possible input (raw) data (generated by the user)
- y: the output (perturbed) data (public and known by adversary)
- ϵ : privacy budget (a smaller ϵ indicates stronger privacy)

A mechanism M satisfies ϵ -LDP if and only if for any pair of inputs x, x'

$$\frac{\Pr(M(x) = y)}{\Pr(M(x') = y)} \leqslant e^{\epsilon}$$

An adversary cannot infer whether the input is x or x' with high confidence (controlled by ϵ)

Applications of LDP

Google Developers

Blog of our latest news, updates, and stories for developers

Enabling developers and organizations to use differential privacy

Thursday, September 5, 2019

Posted by Miguel Guevara, Product Manager, Privacy and Data Protection Office

Source:

https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html

Source:

https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

LDP Protocol: Randomized Response

- binary answer: yes-or-no)
- Example: Is your annual income more than 100k?

Randomized Response (RR) [Warner, 1965]: reports the truth with some probability (for

Advanced versions: Unary Encoding, Generalized RR, ...

Frequency of response *y*

Frequency estimation: $\hat{f} = \frac{f - (1 - p)}{2p - 1}$

Unbiasedness: $\mathbb{E}[\hat{f}] = f^*$

True frequency

 $\mathbb{E}[f] = f^*p + (1 - f^*)(1 - p) = (2p - 1)f^* + (1 - p)$

Extend RR for General Cases

• Assume the domain size is d (taking d = 5 for example)

RR, OUE and GRR are building block mechanisms for frequency aggregation

Key-Value Data Collection

Reporting all pairs will lead to a small budget and large error in each pair

Challenges

- 1. Each user has different number of key-value pairs.
- 2. If a fake key is reported, how to report the corresponding value?
- 3. How to design an optimal mechanism with the best privacy-utility tradeoff?

ngs	Avg. Rating
)	4.1
)	3.3
	4.7
	:

- Data Type: each user has multiple key-value pairs
- Data Domain: key in $\{1, 2, \dots, d\}$, value in [-1, 1]
- Task: frequency and mean estimation
- Threat Model: honest-but-curious server
- Objectives: good privacy-utility tradeoff

Sampling an index j from the whole domain (with size d) and reporting the j-th pair cannot make full use of the original pairs

Existing Mechanism: PrivKVM [Ye et al, S&P' 19]

be perturbed from the estimated mean by the server)

Limitations of PrivKVM

- Multiple rounds requires all users to be always online and the privacy budget in each round is very small (thus large error).
- The naive sampling protocol may not work well for a large domain.
- No improved privacy budget composition (although key and value are perturbed with some correlation).

Our Mechanism

- Only one round
- Advanced sampling protocol
- Tight privacy budget composition (and optimized budget allocation)

Outline

- Background of LDP
- Problem Statement and Existing Mechanism
- Our Framework: PCKV
- Experiments
- Conclusion

Joint perturbation and privacy analysis can improve privacy**utility tradeoff** (due to tight privacy budget composition)

- Joint privacy analysis: in an end-to-end way (instead of directly using sequential composition)

• Advanced sampling protocol: each user pads her keys into a uniform length ℓ by some dummy keys **Perturb and Report**

• Optimized allocation of ϵ_1 and ϵ_2 : by minimizing MSE of estimation under tight budget composition

Perturbation and Privacy Analysis

Joint/Correlated Perturbation

Joint Privacy Analysis

The final privacy budget is less than $\epsilon_1 + \epsilon_2$

> PCKV-UE has tighter privacy budget composition \bullet than directly using sequential composition

$$\epsilon = \max\{\epsilon_2, \epsilon_1 + \ln[2/(1 + e^{-\epsilon_2})]\} \leqslant \epsilon_1 + \epsilon_2$$
(because $\epsilon_1 \ge 0$ and $\frac{2}{1 + e^{-\epsilon_2}} \leqslant e^{\epsilon_2}$)

- PCKV-GRR has similar tight budget composition \bullet and additional privacy benefit from sampling.
- PrivKVM does not have tight budget composition (because the fake value is reported with two different probabilities).

Aggregation and Estimation

- The server aggregates the supporting numbers of value 1 and -1 for the k-th key.
- Estimated frequency \hat{f}_k : multiplied by ℓ due to sampling, where $\mathbb{E}[\hat{f}_k] = f_k^*$ Unbiased

• Estimated mean
$$\hat{m}_k = \frac{\text{calibrated sum}}{\text{calibrated counts}}$$
,

- The MSEs of \hat{f}_k and \hat{m}_k depend on how to balance ϵ_1 and ϵ_2 under a fixed total privacy budget ϵ
- where $\mathbb{E}[\hat{m}_k] \to m_k^*$ when $n \to \infty$

Asymptotically Unbiased

Tractability of theoretical analysis

Optimized Privacy Budget Allocation

$$\epsilon_1 = \ln[(e^{\epsilon} + 1)/2], \ \epsilon_2 = \epsilon$$

$$\epsilon_1 = \ln[\ell \cdot (e^{\epsilon} - 1)/2 + 1], \ \epsilon_2 = \ln[\ell \cdot (e^{\epsilon} - 1) + 1]$$

Final Perturbation (after sampling)

How to optimally determine ϵ_1, ϵ_2 when given ϵ

Optimized Allocation

Optimized PCKV-GRR

$$y$$

$$(,1)$$

$$(,-1) \longrightarrow \frac{\ell(e^{\epsilon}-1)+1}{\ell(e^{\epsilon}-1)+2d'}$$

$$(,1) \longrightarrow \frac{1}{\ell(e^{\epsilon}-1)+2d'}$$

$$(2,-1)$$

$$(,1)$$

Summary of PCKV

- Step 1. Choose the advanced sampling protocol
- Step 2. Jointly perturb key-value and jointly analyze the privacy (which provides tight privacy budget composition)
- Step 3. Optimally put things together (i.e., optimized privacy budget allocation under a fixed total budget)

Experiments

- The theoretical results close (dashed lines) to the empirical results (solid lines)
- Our mechanisms outperforms existing ones on both frequency and mean estimation

Improvements of PCKV

- Advanced sampling protocol
- Tight budget composition
- **Optimized budget allocation**

Experiments

Benefit from each improvement

- Tight Budget Composition \bullet v.s. Sequential Composition
- **Optimized Budget Allocation** \bullet v.s. Non-optimized

Success of top frequent keys 100% identification (varying domain size) 80% recision PCKV mechanisms outperforms 60% \bullet other ones More 40% Accurate PCKV-UE has smaller impact 20% \bullet from large domain size 0% 20

Real-world Data

Amazon Dataset

ratings: 2M# users: 1M# keys: 249K

Data source: <u>https://www.kaggle.com/skillsmuggler/amazon-ratings</u>

Movie Dataset

ratings: 20M# users: 138K# keys: 26K

Data source: <u>https://www.kaggle.com/ashukr/movie-rating-data</u>

Conclusion

- privacy budget composition than sequential composition)

Future work

- Study the optimized strategy of choosing ℓ in Padding-and-Sampling protocol.
- multi-dimensional data.

• The advanced sampling protocol can improve the sampling efficiency and the utility.

 Joint/correlated perturbations of key and value (rather than independent ones) can provide more options for mechanism design and the chance to choose the optimized one.

• Joint privacy analysis can lead to better privacy-utility tradeoff (because it results in tighter

Extend the correlated perturbation and tight composition analysis to other general types of

Thanks for your attention !

Contact Information: <u>xiaolang@email.arizona.edu</u>

Q&A