PCKV: Locally Differentially Private Correlated Key-Value Data Collection with Optimized Utility

Xiaolan Gu*, Ming Li* , Yueqiang Cheng**, Li Xiong# and Yang Cao†

* University of Arizona ** Baidu Security # Emory University # Kyoto University

USENIX Security Symposium, August 2020

Overview

- Background of LDP
- Problem Statement and Existing Mechanism
- Our Framework: PCKV
- Experiments
- Conclusion

Background

• Companies are collecting our private data to provide better services (Google, Facebook,

- Apple, Yahoo, Uber, …)
- However, privacy concerns arise
- Possible solution: locally private data collection model

 \bullet …

• Yahoo: massive data breaches impacted 3 billion user account, 2013 • Facebook: 267 million users' data has reportedly been leaked, 2019

An adversary cannot infer whether the input is x or x' with high confidence (controlled by ϵ)

Local Differential Privacy (LDP) [Duchi et al, FOCS' 13]

and any output *y* Pr(*M*(*x*) = *y*)

- x, x' : the possible input (raw) data (generated by the user)
- y : the output (perturbed) data (public and known by adversary)
- ϵ : privacy budget (a smaller ϵ indicates stronger privacy)

A mechanism M satisfies ϵ -LDP if and only if for any pair of inputs x,x'

$$
\frac{\Pr(M(x) = y)}{\Pr(M(x') = y)} \le e^{\epsilon}
$$

Applications of LDP

Google Developers

Blog of our latest news, updates, and stories for developers

Enabling developers and organizations to use differential privacy

Thursday, September 5, 2019

Posted by Miguel Guevara, Product Manager, Privacy and Data Protection Office

Source:

<https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html>

Source: <https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html>

LDP Protocol: Randomized Response

• Randomized Response (RR) [Warner, 1965]: reports the truth with some probability (for

- binary answer: yes-or-no)
- Example: Is your annual income more than 100k?

Frequency estimation: $f =$ *f* − (1 − *p*) 2*p* − 1

Unbiasedness: $\mathbb{E}[f] = f^*$ ̂

True frequency

 $\mathbb{E}[f] = f^*p + (1 - f^*)(1 - p) = (2p - 1)f^* + (1 - p)$

Frequency of response *y*

Advanced versions: Unary Encoding, Generalized RR, …

Extend RR for General Cases

• Assume the domain size is *d* (taking *d* = 5 for example)

RR, OUE and GRR are building block mechanisms for frequency aggregation

Key-Value Data Collection

-
- Data Domain: key in $\{1, 2, \dots, d\}$, value in $[-1, 1]$
- Task: frequency and mean estimation
- Threat Model: honest-but-curious server
- Objectives: good privacy-utility tradeoff

Sampling an index j from the whole domain (with size d) and reporting the j -th pair cannot make full use of the original pairs

Challenges

- 1. Each user has different number of key-value pairs.
- 2. If a fake key is reported, how to report the corresponding value?
- 3. How to design an optimal mechanism with the best privacy-utility tradeoff?

Reporting all pairs will lead to a small budget and large error in each pair

Existing Mechanism: PrivKVM [Ye et al, S&P' 19]

- Multiple rounds requires all users to be always online and the privacy budget in each round is very small (thus large error).
- The naive sampling protocol may not work well for a large domain.
- No improved privacy budget composition (although key and value are perturbed with some correlation).

Limitations of PrivKVM

Our Mechanism

- Only one round
- Advanced sampling protocol
- Tight privacy budget composition (and optimized budget allocation)

Outline

- Background of LDP
- Problem Statement and Existing Mechanism
- Our Framework: PCKV
- Experiments
- Conclusion

- Joint privacy analysis: in an end-to-end way (instead of directly using sequential composition)
-

• Advanced sampling protocol: each user pads her keys into a uniform length *ℓ* by some dummy keys **Perturb and Report**

• Optimized allocation of ϵ_1 and ϵ_2 : by minimizing MSE of estimation under tight budget composition

Joint perturbation and privacy analysis can **improve privacyutility tradeoff** (due to tight privacy budget composition)

Perturbation and Privacy Analysis

$$
\epsilon = \max\{\epsilon_2, \epsilon_1 + \ln[2/(1 + e^{-\epsilon_2})]\} \le \epsilon_1 + \epsilon_2
$$

(because $\epsilon_1 \ge 0$ and $\frac{2}{1 + e^{-\epsilon_2}} \le e^{\epsilon_2}$)

- PCKV-GRR has similar tight budget composition and additional privacy benefit from sampling.
- PrivKVM does not have tight budget composition (because the fake value is reported with two different probabilities).

The final privacy budget is less than $\epsilon_1 + \epsilon_2$

Joint/Correlated Perturbation Joint Privacy Analysis

• PCKV-UE has tighter privacy budget composition than directly using sequential composition

Aggregation and Estimation

- The server aggregates the supporting numbers of value 1 and -1 for the k -th key.
- Estimated frequency f_k : multiplied by ℓ due to sampling, where $\mathbb{E}[f_k] = f_k^*$ ̂ \overline{a} Unbiased

Asymptotically Unbiased

• The MSEs of f_k and \hat{m}_k depend on how to balance ϵ_1 and ϵ_2 under a fixed total privacy budget ϵ

\n- Estimated mean
$$
\hat{m}_k = \frac{\text{calibrated sum}}{\text{calibrated counts}}
$$
, where $\mathbb{E}[\hat{m}_k] \to m_k^*$ when $n \to \infty$
\n

- ̂ ̂
- ̂

Tractability of theoretical analysis

Optimized Privacy Budget Allocation

y
\n(1, 1)
\n(1, -1)
\n
$$
\frac{\ell(e^{\epsilon} - 1) + 1}{\ell(e^{\epsilon} - 1) + 2d'}
$$
\n
$$
\frac{1}{\ell(e^{\epsilon} - 1) + 2d'}
$$
\n
$$
\frac{1}{\ell(2, -1)}
$$
\n
$$
\vdots
$$

Final Perturbation (after sampling)

$$
\epsilon_1 = \ln[(e^{\epsilon} + 1)/2], \ \epsilon_2 = \epsilon
$$
\n $\epsilon_1 = \ln[\ell \cdot (e^{\epsilon} - 1)/2 + 1], \ \epsilon_2 = \ln[\ell \cdot (e^{\epsilon} - 1) + 1]$

- Step 1. Choose the advanced sampling protocol
- Step 2. Jointly perturb key-value and jointly analyze the privacy (which provides tight privacy budget composition)
- Step 3. Optimally put things together (i.e., optimized privacy budget allocation under a fixed total budget)

$$
\epsilon_1 = \ln[(e^{\epsilon} + 1)/2], \ \epsilon_2 = \epsilon
$$

Summary of PCKV

Experiments

- The theoretical results close (dashed lines) to the empirical results (solid lines)
- Our mechanisms outperforms existing ones on both frequency and mean estimation

Improvements of PCKV

- Advanced sampling protocol
- Tight budget composition
- Optimized budget allocation

Experiments

Success of top frequent keys 100% identification (varying domain size) 80% recision • PCKV mechanisms outperforms 60% other ones **More** 40% **Accurate** • PCKV-UE has smaller impact 20% from large domain size0%

- Tight Budget Composition v.s. Sequential Composition
- Optimized Budget Allocation v.s. Non-optimized

Real-world Data

Amazon Dataset

ratings: 2M # users: 1M # keys: 249K

Data source:<https://www.kaggle.com/skillsmuggler/amazon-ratings>

Movie Dataset

ratings: 20M # users: 138K # keys: 26K

Data source: <https://www.kaggle.com/ashukr/movie-rating-data>

Conclusion

• Joint/correlated perturbations of key and value (rather than independent ones) can provide more options for mechanism design and the chance to choose the optimized one.

• Joint privacy analysis can lead to better privacy-utility tradeoff (because it results in tighter

- Study the optimized strategy of choosing ℓ in Padding-and-Sampling protocol.
- multi-dimensional data.

• The advanced sampling protocol can improve the sampling efficiency and the utility.

-
-
- privacy budget composition than sequential composition)

Future work

• Extend the correlated perturbation and tight composition analysis to other general types of

Thanks for your attention !

Q&A

Contact Information: xiaolang@email.arizona.edu