Providing Input-Discriminative Protection for Local Differential Privacy

Xiaolan Gu*, Ming Li*, Li Xiong# and Yang Cao†

*University of Arizona #Emory University †Kyoto University

IEEE International Conference on Data Engineering (ICDE), April 2020

Overview

- Background on LDP
- Our Privacy Notion: ID-LDP
- Our Privacy Mechanism on ID-LDP
- Evaluation
- Conclusion

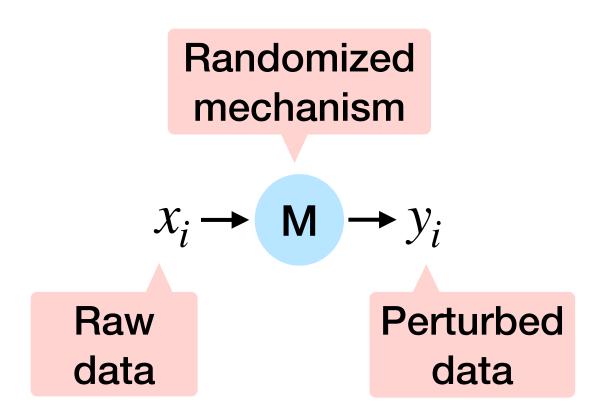
Background

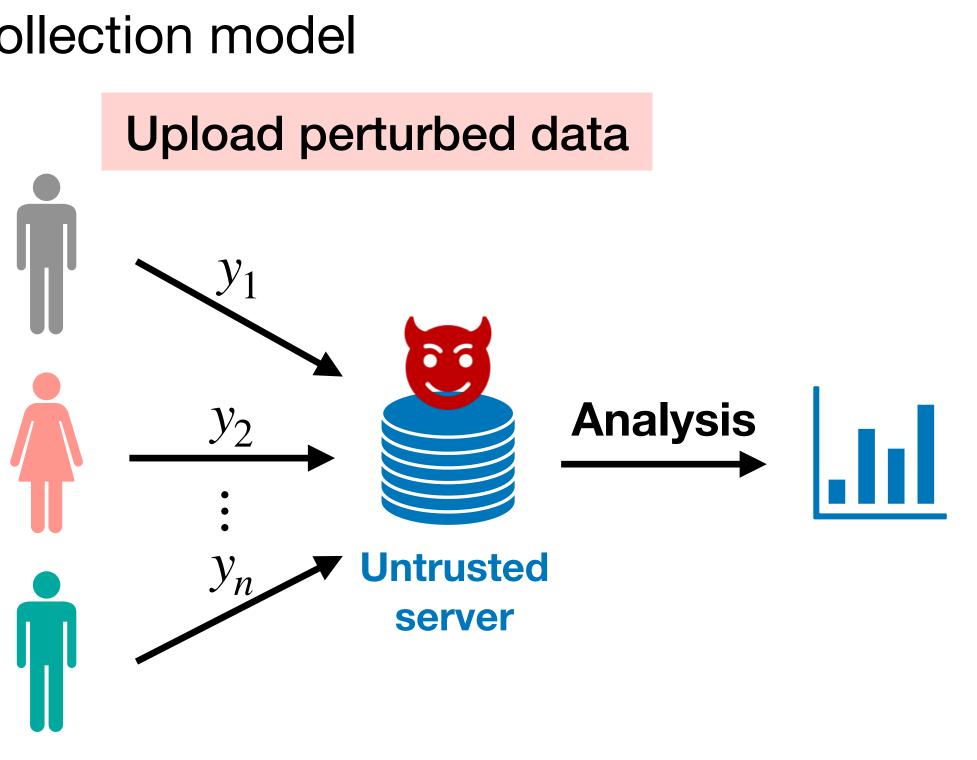
 Companies are collecting our private data Apple, Yahoo, Uber, …)

 \bullet

. . .

- However, privacy concerns arise
- Possible solution: locally private data collection model





• Companies are collecting our private data to provide better services (Google, Facebook,

Yahoo: massive data breaches impacted 3 billion user account, 2013 Facebook: 267 million users' data has reportedly been leaked, 2019

Local Differential Privacy (LDP) [Duchi et al, FOCS' 13]

and any output y $\Pr(M)$

- x, x': the possible input (raw) data (generated by the user)
- y: the output (perturbed) data (public and known by adversary)
- ϵ : privacy budget (a smaller ϵ indicates stronger privacy)

A mechanism M satisfies ϵ -LDP if and only if for any pair of inputs x, x'

$$\frac{\Pr(M(x) = y)}{\Pr(M(x') = y)} \leqslant e^{\epsilon}$$

An adversary cannot infer whether the input is x or x' with high confidence (controlled by ϵ)

Applications of LDP

Google Developers

Blog of our latest news, updates, and stories for developers

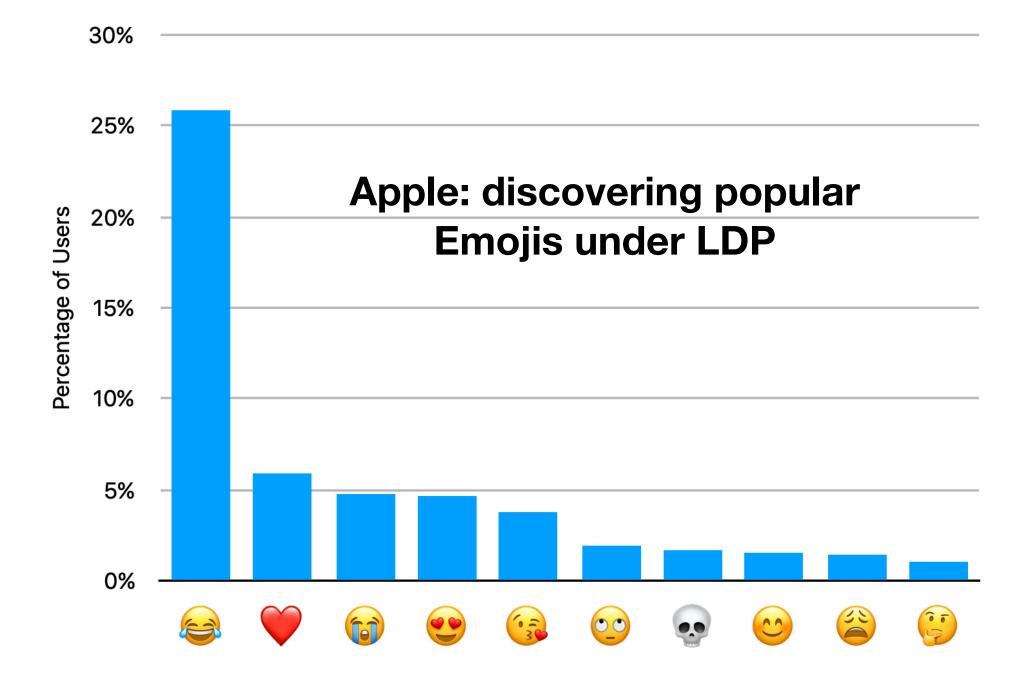
Enabling developers and organizations to use differential privacy

Thursday, September 5, 2019

Posted by Miguel Guevara, Product Manager, Privacy and Data Protection Office

Source:

https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html



Source:

https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

Limitations of LDP

- LDP notion requires the same privacy budget for all pairs of possible inputs
- Existing LDP protocols perturb the data in the same way for all inputs
- However, in many practical scenarios, different inputs have different degrees of sensitiveness, thus require distinct levels of privacy protection.

Scenarios	High sensitiveness	Low sensitiveness
Website-click records	Politics-related	Facebook and Amazon
Medical records	HIV and cancer	Anemia and headache

strong privacy (leading to an inferior privacy-utility tradeoff)

LDP protocols can provide excessive protection for some inputs that do not need such

Our Privacy Notion: Input-Discriminative LDP (ID-LDP) ϵ_{x} is the privacy budget

$$\frac{\Pr(M(x) = y)}{\Pr(M(x') = y)} \leqslant$$

 \bullet

Intuition: for any pair of inputs x, x', MinID-LDP guarantees the adversary's capability of distinguishing them would not exceed the bound controlled by both ϵ_x and $\epsilon_{x'}$ (thus achieving differentiated privacy protection for each pair)

 $e^{r(\epsilon_x,\epsilon_{x'})}$

MinID-LDP has Sequential Composition like LDP, which guarantees the overall privacy for a sequence of mechanisms.

of an input *x*

• Given a privacy budget set $\mathscr{E} = \{\epsilon_x\}_{x \in \mathscr{D}}$, a randomized mechanism M satisfies **Contended** Solution \mathcal{E} -ID-LDP if and only if for any pair of inputs $x, x' \in \mathcal{D}$ and output $y \in Range(M)$

 $r(\cdot, \cdot)$ is a function of two privacy budgets

In this paper, we focus on an instantiation called MinID-LDP with $r(\epsilon_x, \epsilon_{y'}) = \min\{\epsilon_y, \epsilon_{y'}\}$

Relationships with LDP

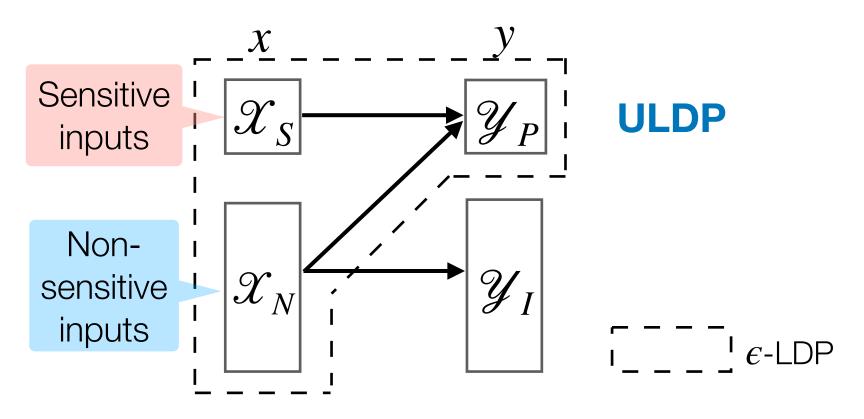
- 1. If $\epsilon_x = \epsilon$ for all $x \in \mathcal{D}$, then \mathscr{E} -MinID-LDP $\Leftrightarrow \epsilon$ -LDP
- 2. If $\min\{\mathscr{C}\} \ge \epsilon$, then ϵ -LDP $\Rightarrow \mathscr{C}$ -MinID-LDP
- 3. If $\epsilon \ge \min\{\max\{\mathscr{C}\}, 2\min\{\mathscr{C}\}\}$, then \mathscr{C} -MinID-LDP $\Rightarrow \epsilon$ -LDP

Factor 2 is due to the symmetric property of the indistinguishability definition

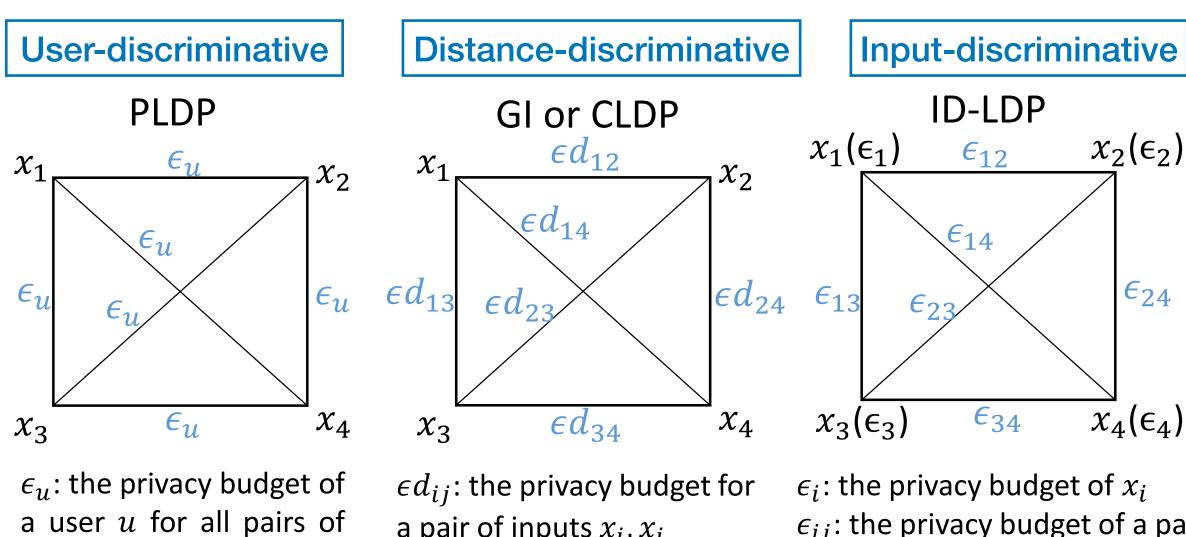
MinID-LDP can be regarded as a relaxation compared with LDP. It captures user's fine-grained privacy requirement, when LDP is too strong (i.e., provides overprotection).

Related Privacy Notions

- Personalized LDP (PLDP) [Chen et al, ICDE' 16]
- Geo-indistinguishability (GI) [Andres et al, CCS' 13]
- Condensed LDP (CLDP) [Gursoy et al, TDSC' 19]
- Utility-optimized LDP (ULDP) [Murakami and Kawamoto, USENIX Security' 19]



ULDP does not guarantee the indistinguishability between the sensitive and non-sensitive inputs when observing some outputs, thus ULDP does not guarantee LDP.



(different user inputs may have different ϵ_u)

a pair of inputs x_i, x_j d_{ij} : distance between x_i, x_j

 ϵ_{ij} : the privacy budget of a pair of inputs x_i , x_j for all users MinID-LDP: $\epsilon_{ii} = \min{\{\epsilon_i, \epsilon_j\}}$

Privacy budget of a pair of inputs in several related notions

Privacy Mechanism Design under ID-LDP

Problem Statement

- Data types: categorical (two cases: each user has only one item or an item-set)
- Analysis Task/Application: frequency estimation (which is the building block for many applications)
- Objectives: minimize MSE of frequency estimation while satisfying ID-LDP

Challenges

x, x', y) can be very large (especially for a large domain or item-set data).

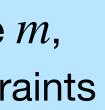
• Objective function (MSE) is dependent on the unknown true frequencies;

Preliminaries: LDP protocols

- Randomized Response
- Unary Encoding Our protocol satisfying ID-LDP is based on this

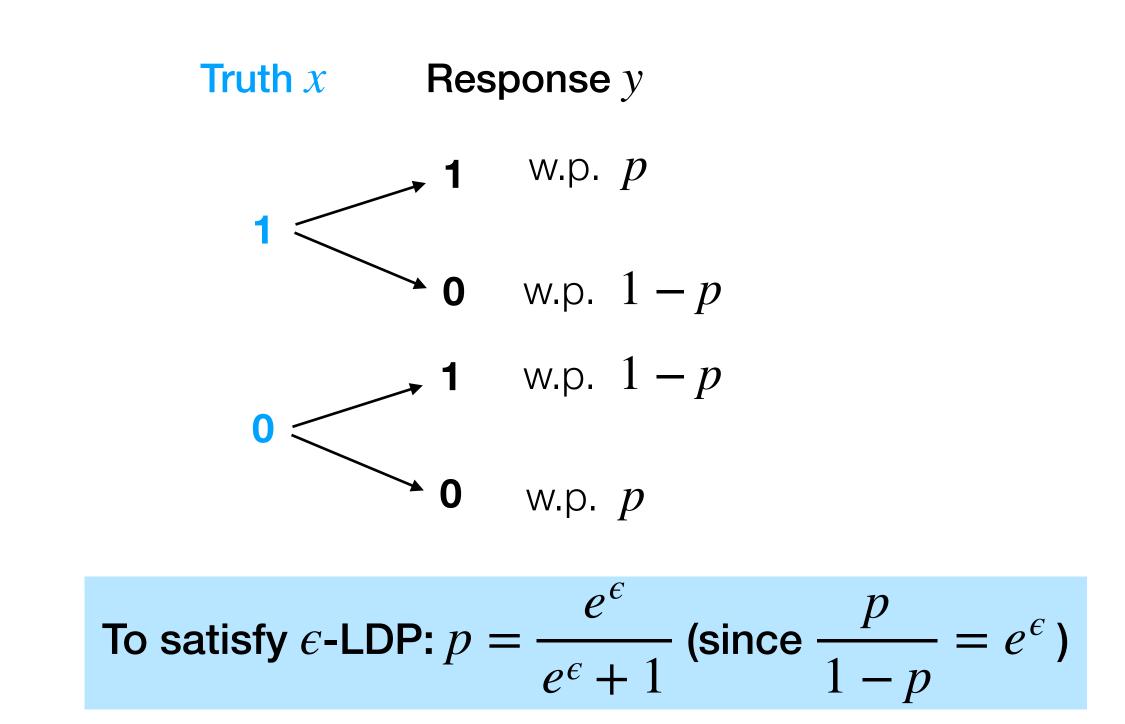
- ID-LDP protocols perturb inputs with different probabilities
- The number of variables (perturbation parameters) and privacy constraints (to be satisfied for any

Example: assume domain size m, then m^2 variables and m^3 constraints



LDP Protocol: Randomized Response

- binary answer: yes-or-no)
- Example: Is your annual income more than 100k?



Randomized Response (RR) [Warner, 1965]: reports the truth with some probability (for

Advanced versions: Unary Encoding, Generalized RR, ...

Frequency of response *y*

Frequency estimation: $\hat{f} = \frac{f - (1 - p)}{2p - 1}$

Unbiasedness: $\mathbb{E}[\hat{f}] = f^*$

True frequency

 $\mathbb{E}[f] = f^*p + (1 - f^*)(1 - p) = (2p - 1)f^* + (1 - p)$

LDP Protocol: Unary Encoding (UE)

- Step 1. encode the input x = i into vector $\mathbf{x} = [0, \dots, 0, 1, 0, \dots, 0]$ with length d
- Step 2. perturb each bit independently

• To handle more general case (domain size is d), UE represents the input/output by multiple bits.

By minimizing the approximate MSE of frequency estimation

To satisfy
$$\epsilon$$
-LDP:
 $p = \frac{e^{\epsilon/2}}{e^{\epsilon/2}+1}, \quad q = \frac{1}{e^{\epsilon}+1}$

Overview of Our Protocol for ID-LDP

For single-item data: IDUE (Input-Discriminative Unary Encoding)

- We propose Unary Encoding based protocol with only 2m variables and m^2 constraints
- can further reduce the problem complexity)

For item-set data: IDUE-PS (with Padding-and-Sampling protocol)

- 2. We show IDUE-PS also satisfies MinID-LDP (if the base protocol IDUE satisfies MinID-LDP)

Recall the two challenges:

- High complexity of the optimization problem.
- 2) MSE depends on unknown true frequencies.

2. We address the second challenge by developing three variants of optimization models (some models)

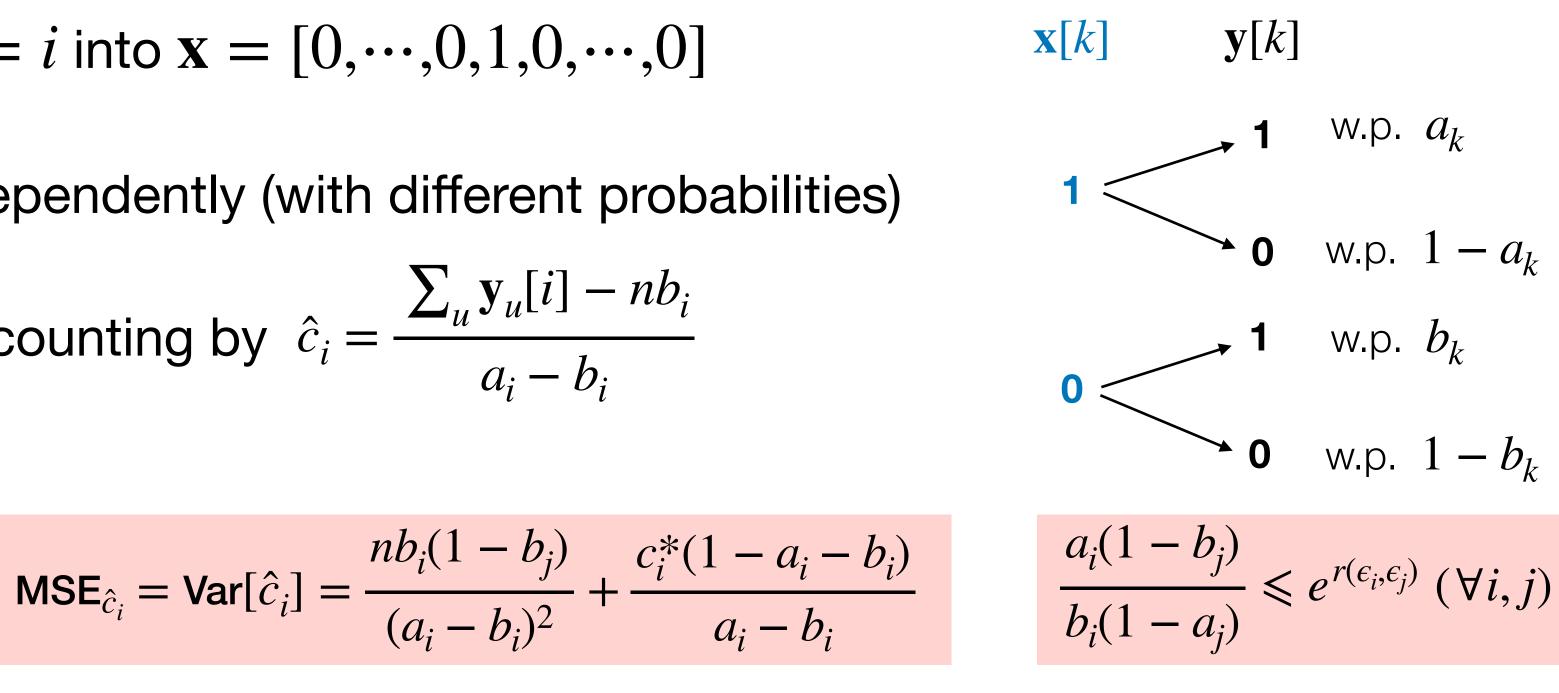
We extend IDUE for item-set data (by combining with a sampling protocol) to solve the scalability issue

Privacy Mechanism for Single-Item Data

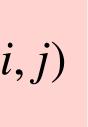
- Step 1, encode the input x = i into $\mathbf{x} = [0, \dots, 0, 1, 0, \dots, 0]$
- Step 2, perturb each bit independently (with different probabilities)
- Step 3, estimate frequency/counting by $\hat{c}_i = \frac{\sum_u \mathbf{y}_u[i] nb_i}{a_i b_i}$
- n number of users
- a_i, b_i perturbation probabilities
- c_i^* true frequency
- \hat{c}_i estimated frequency

Benefits

- The optimization problem only has 2m variables and m^2 constraints
- second term is dependent on the true frequencies C_i^*



The frequency estimator is unbiased, and its MSE can be composed by two terms, where only the



Comparison with LDP Protocols

Probability of flipping $1 - a_i$ (if $\mathbf{x}[i] = 1$) Mechanisms **Privacy Notions** i = $i=2\sim 5$ i = 1RAPPOR [4] 0.3LDP 0.33 0.330.2OUE [6] LDP 0.50.5IDUE MinID-LDP 0.330.30.41

TABLE I: Utility comparison in the toy example, where $\epsilon_1 = \ln 4$ and $\epsilon_i = \ln 6$ ($i \neq 1$).

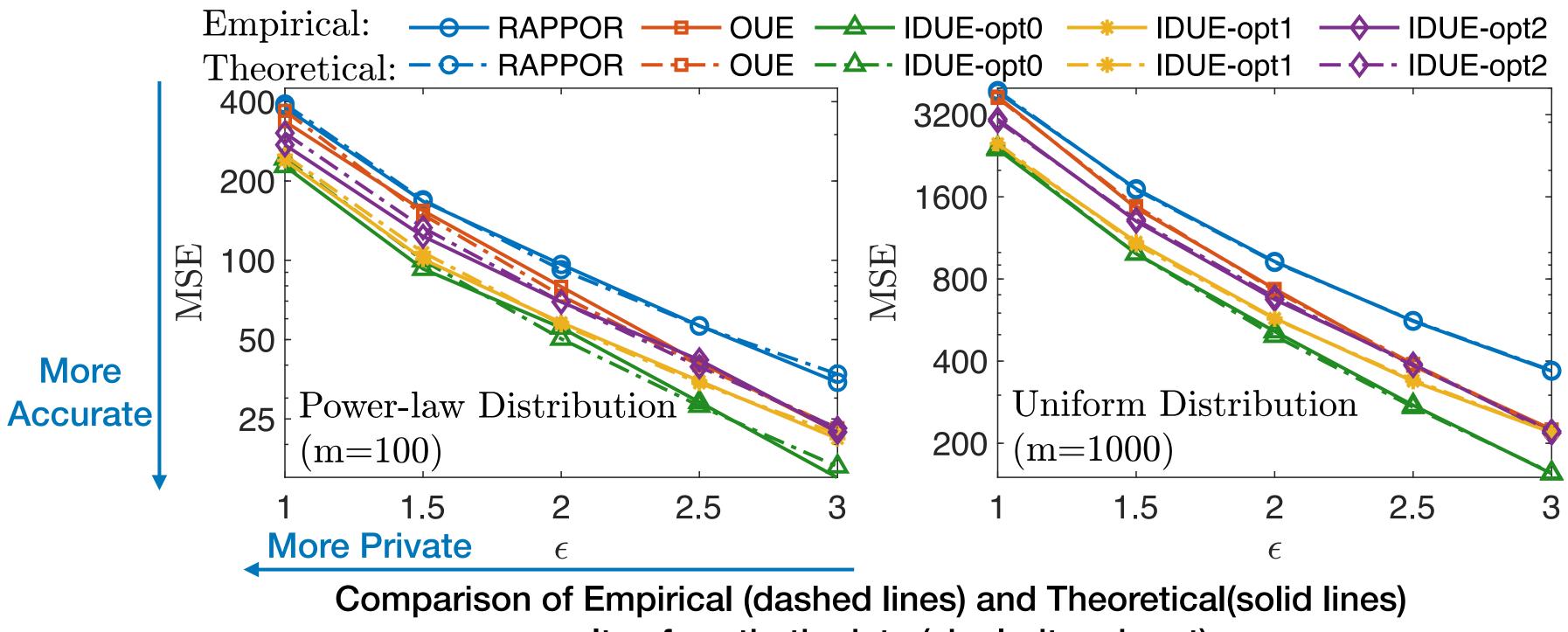
The total variance of IDUE is in a range because it depends on the distribution of true input data, and the upper bound is still less than that of RAPPOR and OUE.

Example: a health organization is taking a survey which asks *n* participants to return a response perturbed from categories (HIV, anemia, headache, stomachache, toothache), where HIV (i = 1) is more sensitive, thus we set different privacy budgets, such as $\epsilon_1 = \ln 4$ and $\epsilon_i = \ln 6$ ($i = 2, \dots, 5$).

example, where $\epsilon_1 = 114$ and $\epsilon_i = 110$ $(i \neq 1)$.										
the <i>i</i> -th bit		Variance of frequency estimation			Total variance					
i (if $\mathbf{x}[i] = 0$)		$Var[\hat{c}_i]$		$\sum_i \operatorname{Var}[\hat{c}_i]$						
: 1	$i=2\sim 5$		i = 1		$i = 2 \sim 5$					
33	0.33		2n		2n	10n				
2	0.2		$1.78n + c_i$		$1.78n + c_i$	9.9n				
33	0.28		$3.27n + 0.31c_i$		$1.32n + 0.13c_i$	$8.68n \sim 8.86n$				
	More perturbation			Less perturbation						
	noise for $i = 1$			noise for $i \neq 1$						

Evaluation

We compare the frequency estimation results of our me (IDUE and IDUE-PS) with RAPPOR and OUE using two datasets and three real-world datasets.



results of synthetic data (single-item input).

 TABLE II: Synthetic and Real-world Datasets

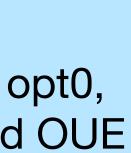
	Datasets	# Records	# Users (n)	# Items (<i>m</i>)	
	Power-law	100,000	100,000	100	
	Uniform	100,000	100,000	1,000	
nechanisms	Retail [27]	908,576	88,162	16,470	
o synthetic	Kosarak [27]	8,019,015	990,002	41,270	
-	Clothing [28]	192,544	105,508	5,850	

Empirical results are very close to theoretical results

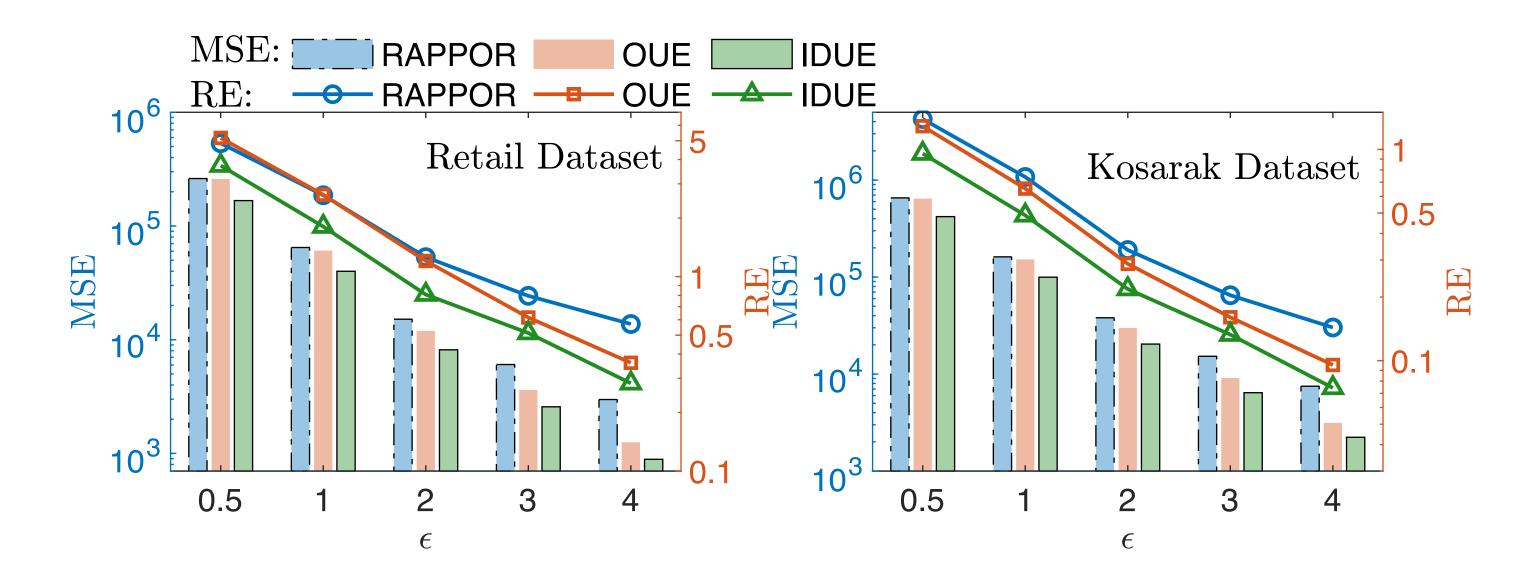
IDUE has smaller MSE than RAPPOR and OUE

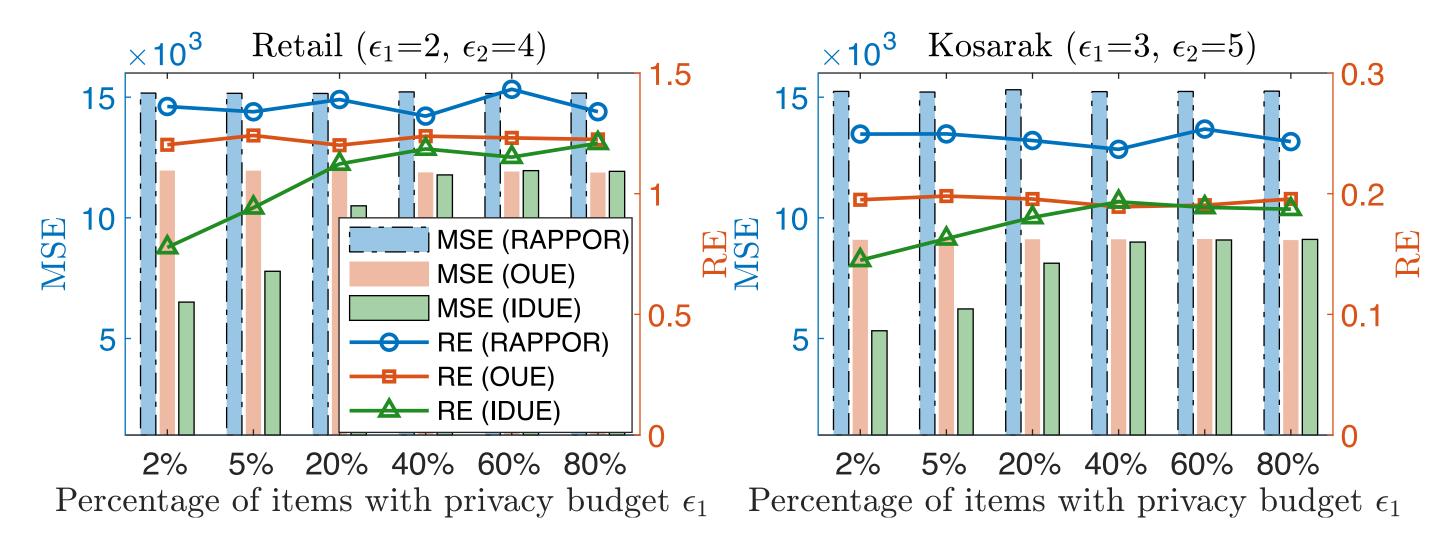
opt0: has the smallest MSE

opt1 and opt2: not good as opt0, but better than RAPPOR and OUE



Real-World Data (Single-Item)





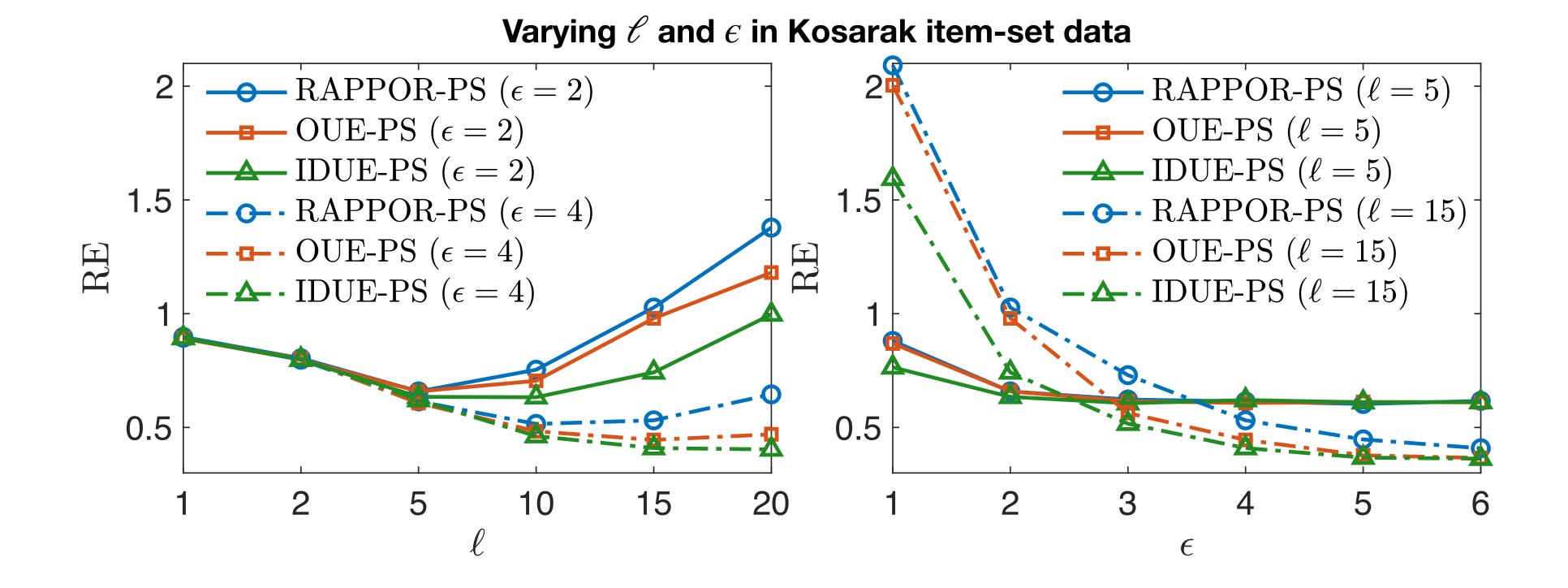
IDUE has smallest MSE and RE (relative error)

$$\mathbf{RE} = \frac{1}{|S|} \sum_{i \in S} \frac{|\hat{c}_i - c_i^*|}{c_i^*}$$

If only small portion of inputs are more sensitive (i.e., have the smallest privacy budget), then IDUE has smaller estimation error.

Otherwise, IDUE has similar performance compared with OUE

Item-Set Data



The optimal ℓ (parameter of Padding-and-Sampling protocol) depends on both data distribution and privacy budget (the original paper only mentioned data-dependent). We leave this as our further work.

Conclusion

- 1. Privacy notion ID-LDP provides input-discriminative protection in the local setting
- 2. Its instantiation MinID-LDP is a fine-grained version of LDP
- 3. The proposed protocol IDUE outperforms LDP protocols
- 4. The advanced version IDUE-PS solves the scalability problem for item-set data

Future work:

- Extend our work to handle more complex data types and analysis tasks;
- Study the strategy of finding the optimal ℓ based on the data distribution and privacy budget.

Thanks for your attention !

Q&A