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Federated Learning Privacy Vulnerabilities

Possible privacy attacks...
» Membership Inference
“Whether data of a target victim has been used to train a model?”
» Reconstruction attack
Given a gender classifier, “What a male looks like?”
» Unintended inference attack

Given a gender classifier, “What is the race of people in Bob’'s photos?”
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The server adds noises to aggregated updates.
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LDP is a natural privacy definition for FL




Local Differential Privacy for Federated Learning
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A randomized mechanism M is e-LDP iff. for any two possible inputs v, v’
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Challenges of LDP in Federated Learning

For a d-dimensional vector, the metric is;
* Given a local privacy budget € for the vector,
* The error in the estimated mean of each dimension

If split local privacy budget to d dimensions[1]:
* The erroris super-linear to d, and can be excessive when d is large




Challenges of LDP in Federated Learning

For a d-dimensional vector, the metric is;
* Given a local privacy budget € for the vector,
* The error in the estimated mean of each dimension

If split local privacy budget to d dimensions[1]:
* The erroris super-linear to d, and can be excessive when d is large

An asymptotically optimal conclusion[1]:

1. Random sample k dimensions
* Increase the privacy budget for each dimension
* Reduce the noise variance incurred

2. Perturb each sampled dimension with €/k

3. Aggregate and scale up by the factor of%




Challenges of LDP in Federated Learning
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The dimension curse!

Typical orders-of-magnitude
d: 100-1,000,000s dimensions

m: 100-1000s users per round
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Our Intuition

Common bottleneck of the dimension curse =
» Distributed learning
Agv Data are partitioned and distributed for accelerating the training process
v Gradient vectors are transmitted among separate workers
G{ Communication costs = d X bits of representing one real value
» Gradient sparsification
Reduce communication costs by only transmitting important dimensions
> Intuition

Dimensions with larger absolute magnitudes are more important

=> Efficient dimension reduction for LDP
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Common focus on selecting Top dimensions
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Two-stage Framework- FedSel

Server » Top-k dimension selection is data-dependent
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Two-stage Framework- FedSel
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» Top-k dimension selection is data-dependent

Local vector = Top-k information + value
Information

» Two-stage framework
Private selection + Value Perturbation

» Sequential Composition

* The Top-k selection is €;-LDP

* The value perturbation is €,-LDP

* =>The mechanismis €e-LDP, € = €; + €,
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1. Sorting and the ranking is denoted with {z,, ..., zz} € {1, ..., d}?
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Methods-Perturbed Encoding Mechanism (PE)

2. For each dimension,

to retain status z; with a larger probability p

/1. Sorting and the ranking is denoted the Top-k status with {z;, ..., zz}€ {0,1}¢

\

value

to flip z; has a smaller probability 1 —p p el +1
Q Sample from dimension set S = {j|z; = 1} /
{Zla T 7Zd} — {07 17 1707070}
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Methods-Perturbed Sampling Mechanism (PS)
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1. Sorting and the ranking is denoted the Top-k status with {z;, ..., zz}€ {0,1}¢

2. Sample a dimension from:

: : : - d°l-k
Top-k dimension set, with a larger probability p D= g"xkre1k

Non-top dimension set, with a smaller probability 1 —p
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Empirical results

logistic regression syn-L(c; =0.01 ¢, =0.6)
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Even a small budget in dimension selection helps to increase the learning accuracy
Private Top-k selection helps to improve the learning utility independent of the
mechanism for perturbing one dimension.




Empirical results

dataset model |EXP-gain| EXP-loss| PE-gain |PE-loss|PS-gain|PS-loss
syn-L-0.01-0.9logistic| 8.6074 | 0.3517 | 5.410 | 1.192 | 5.975 | 0.4970
syn-L-0.01-0.9 SVM | 7.1950 | 2.1593 |[3.7704 | 0.8533 | 5.065 |2.0816
BANK logistic| 2.4197 | -0.157 |3.2338|0.0464 |2.5525|0.1463
BANK SVM | 4.3823 | 0.4436 |3.4369| 0.2530 |4.0244|0.0164
KDD logistic| 2.0471 | 0.5091 |2.5148|0.2322|2.0171|0.3428
KDD SVM | 1.85629 | -0.1625 | 2.2168 | 0.2288 | 1.8291 | 0.4465
ADULT  |logistic| 5.5745 | 0.2935 |5.6445| 1.3096 |6.0535|0.8091
ADULT SVM | 5.5361 | 0.1949 |5.6057 | 0.9550 |5.1442|0.3852

gain = acc(EXP/PE/PS-PM-C) — acc(PM),
loss = acc(EXP/PE/PS-PM-C) — acc(EXP/PE/PS-PM).

What we gain is much larger than what we lose
from private and efficient Top-k selection




Summary
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Conclusion

*  We propose a two-stage framework for locally differential private federated SGD

« We propose 3 private selection mechanisms for efficient dimension reduction under LDP
Takeaway

« Private mechanism can be specialized for sparse vector

* Private Top-k dimension selection can improve learning utility under a given privacy level

Future work

\Optimal hyper-parameter tuning




_ Utility +

- Privacy +




