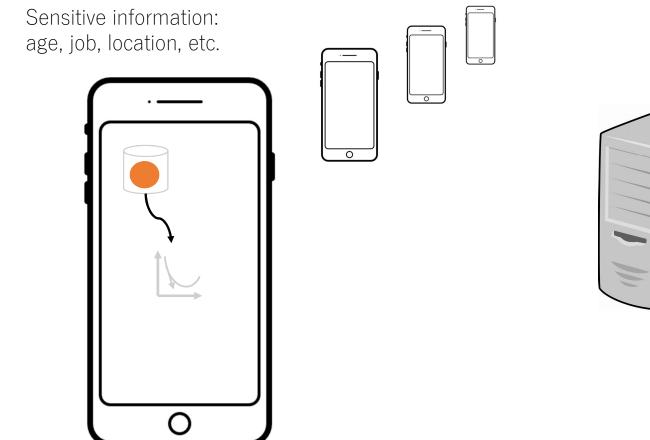
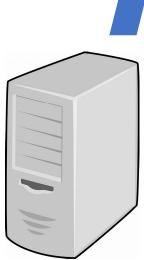
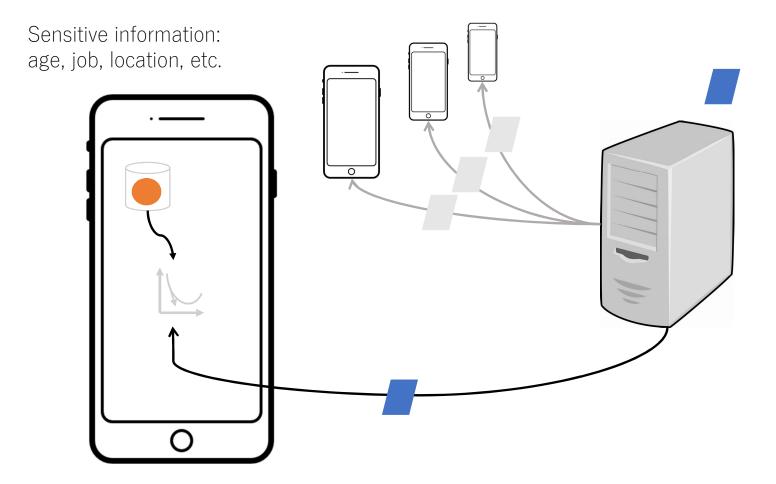
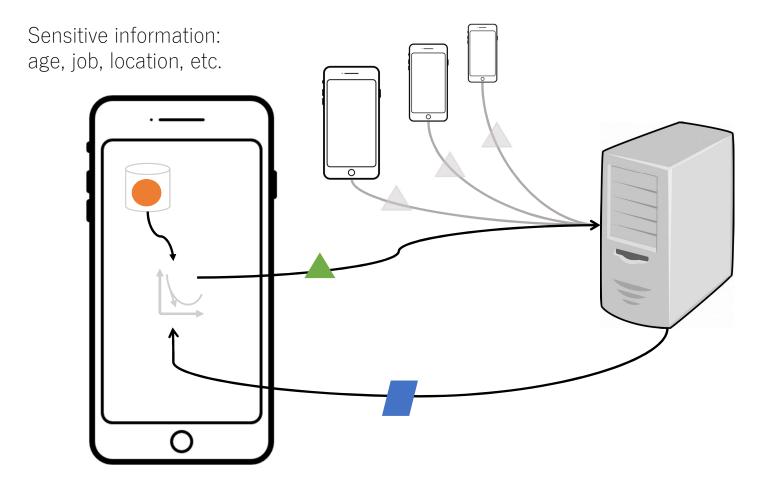
FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection

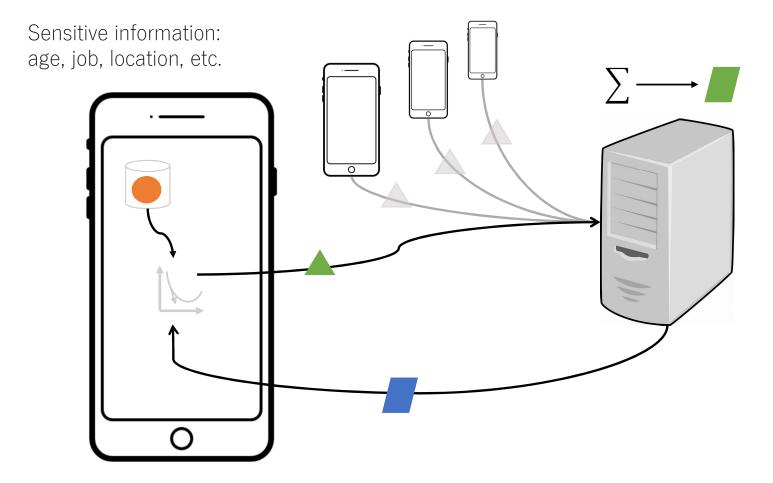
Ruixuan Liu¹, Yang Cao², Masatoshi Yoshikawa², Hong Chen¹ ¹Renmin University of China, ²Kyoto University DASFAA, 2020



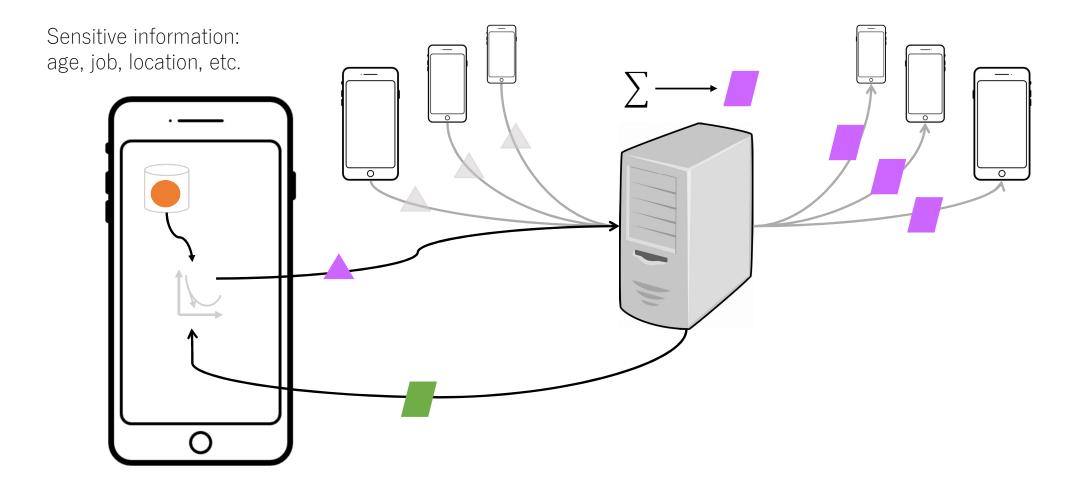


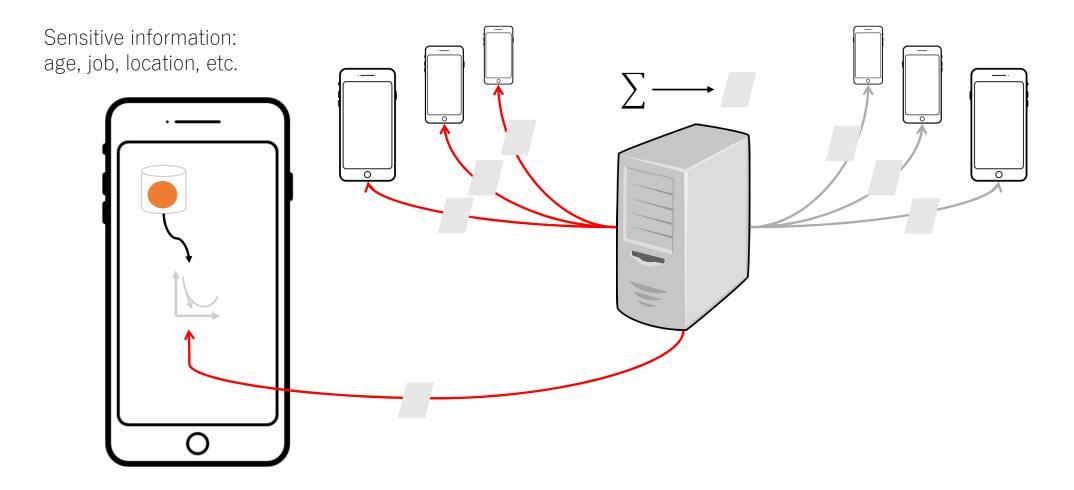


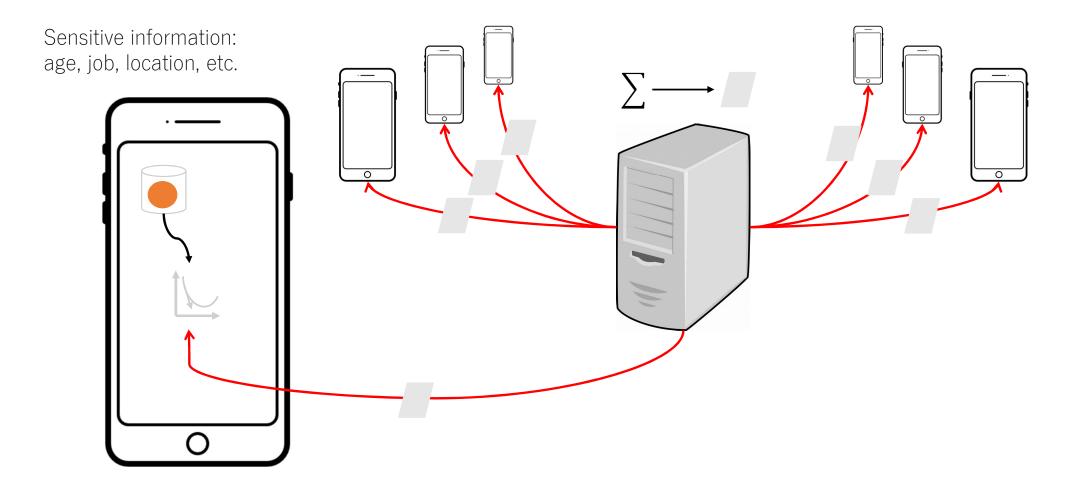


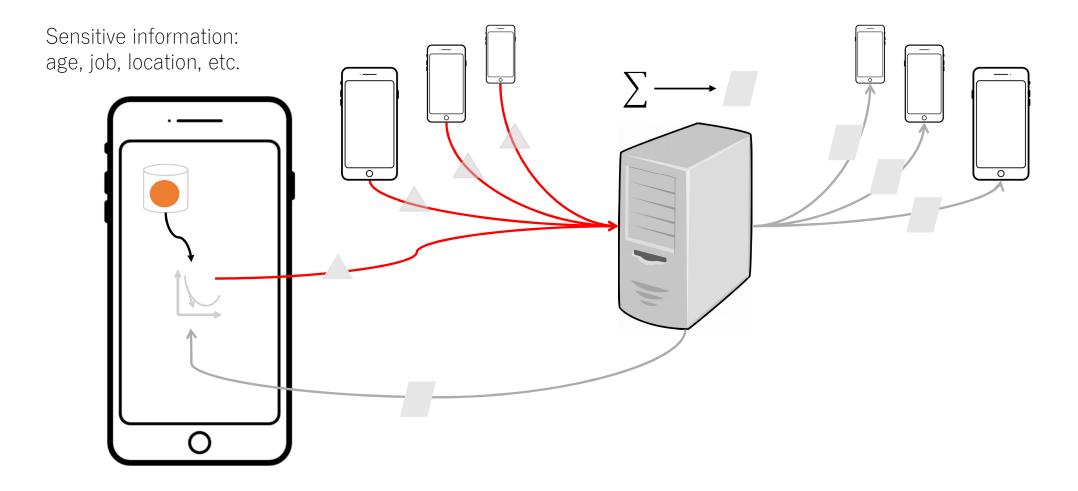












Possible privacy attacks...

Membership Inference

"Whether data of a target victim has been used to train a model?"

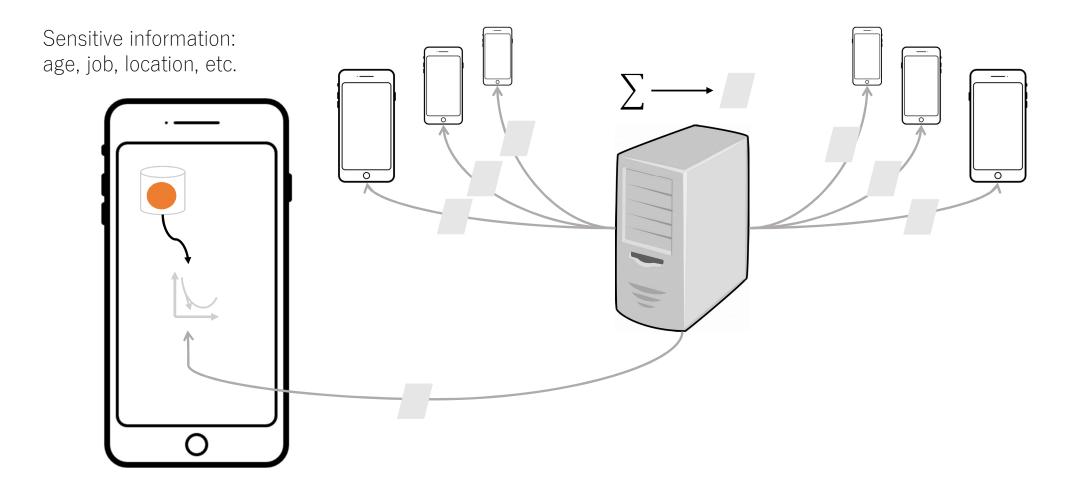
Reconstruction attack

Given a gender classifier, "What a male looks like?"

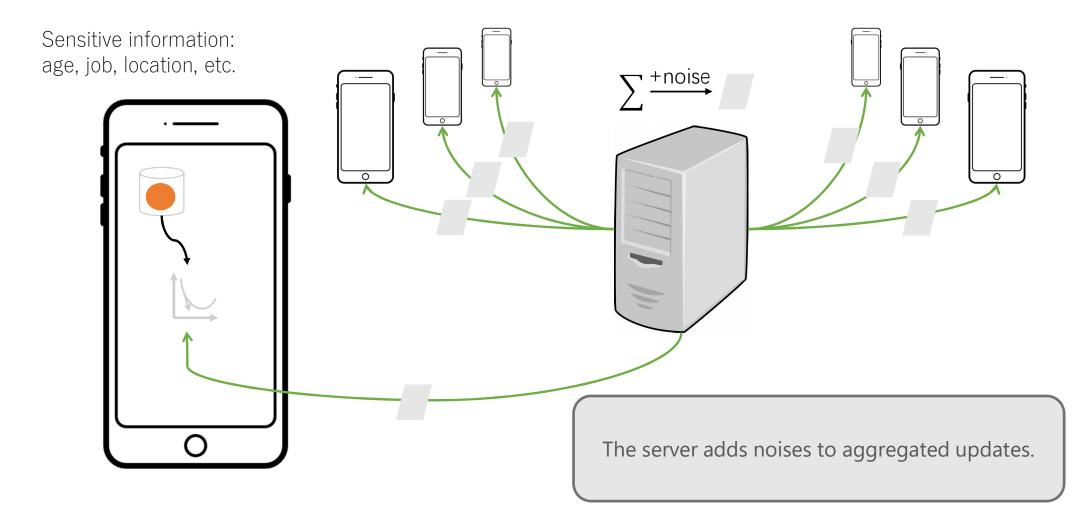
Unintended inference attack

Given a gender classifier, "What is the race of people in Bob's photos?"

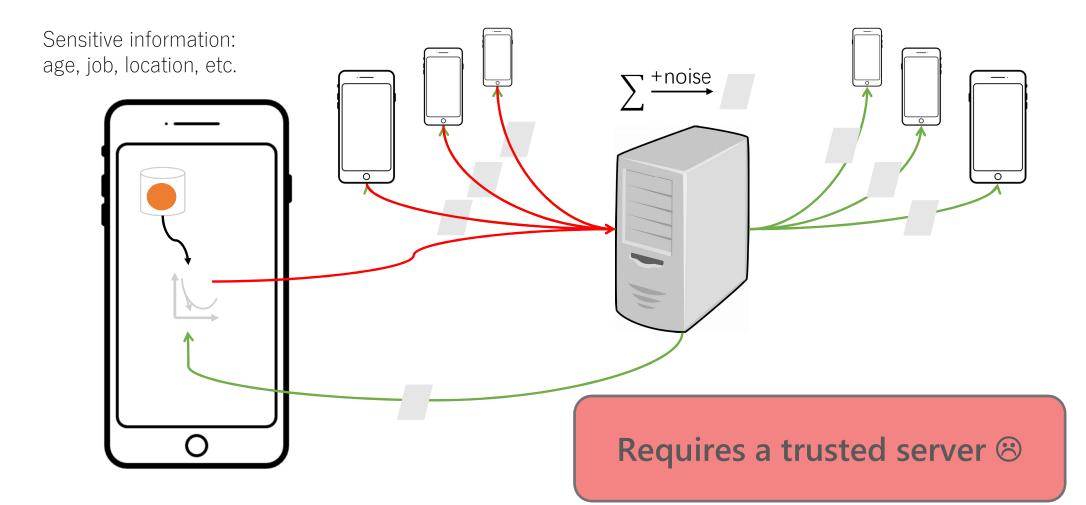
Differential Privacy for Federated Learning



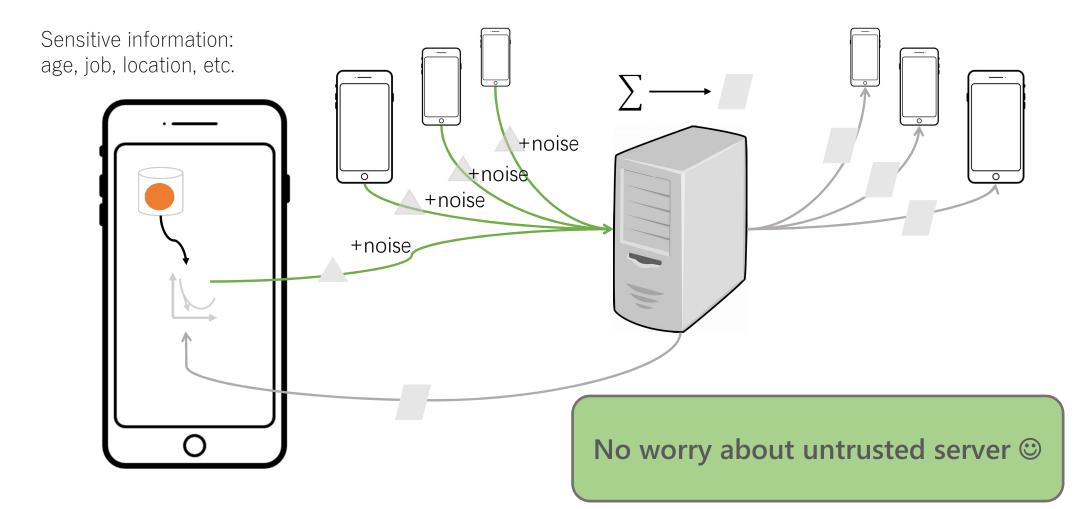
Differential Privacy for Federated Learning



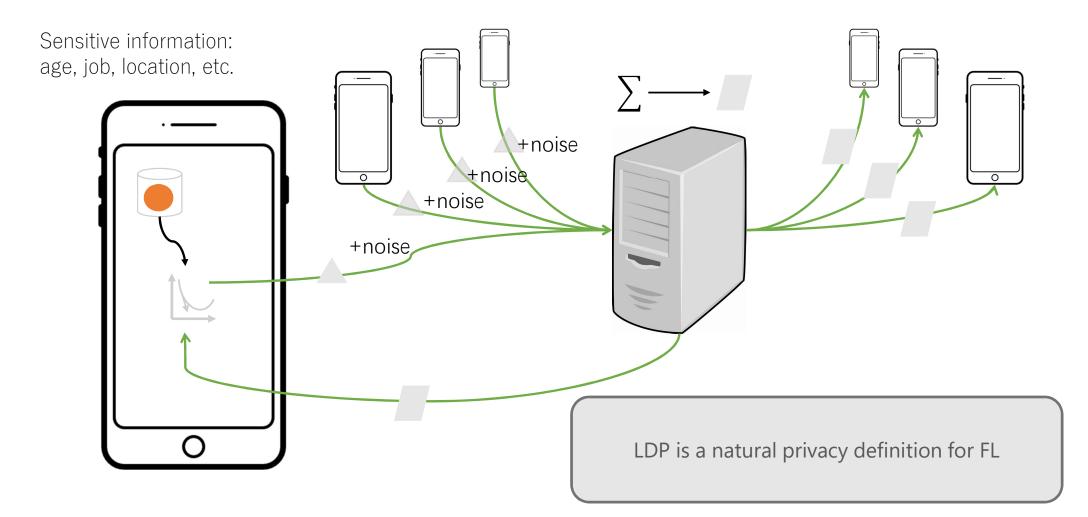
Differential Privacy for Federated Learning



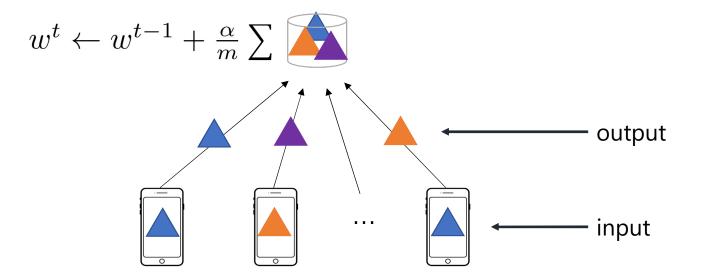
Local Differential Privacy for Federated Learning



Local Differential Privacy for Federated Learning



Local Differential Privacy for Federated Learning



A randomized mechanism \mathcal{M} is ϵ -LDP iff. for any two possible inputs v, v'and output v^* : $\frac{Pr[\mathcal{M}(v)=v^*]}{Pr[\mathcal{M}(v')=v^*]} \leq e^{\epsilon}$.

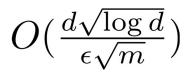
Challenges of LDP in Federated Learning

For a *d*-dimensional vector, the metric is:

- Given a local privacy budget ϵ for the vector,
- The error in the estimated mean of each dimension

If split local privacy budget to d dimensions[1]:

• The error is super-linear to d, and can be excessive when d is large



Challenges of LDP in Federated Learning

For a *d*-dimensional vector, the metric is:

- Given a local privacy budget ϵ for the vector,
- The error in the estimated mean of each dimension

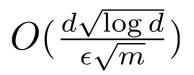
If split local privacy budget to d dimensions[1]:

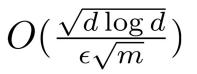
• The error is super-linear to d, and can be excessive when d is large

An asymptotically optimal conclusion[1]:

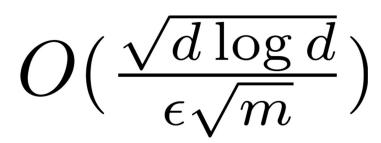
- 1. Random sample k dimensions
 - Increase the privacy budget for each dimension
 - Reduce the noise variance incurred
- 2. Perturb each sampled dimension with ϵ/k
- 3. Aggregate and scale up by the factor of $\frac{d}{k}$

[1] Wang N, Xiao X, Yang Y, et al. Collecting and analyzing multidimensional data with local differential privacy[C]//2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 638-649.





Challenges of LDP in Federated Learning



The dimension curse!

Typical orders-of-magnitude

d: 100-1,000,000s dimensions

m: 100-1000s users per round

 ϵ : smaller privacy budget = stronger privacy

Our Intuition

Common bottleneck of the dimension curse

Distributed learning

- Data are partitioned and distributed for accelerating the training process
- Gradient vectors are transmitted among separate workers
- \mathbf{Q} Communication costs = $d \times$ bits of representing one real value

Gradient sparsification

Reduce communication costs by only transmitting important dimensions

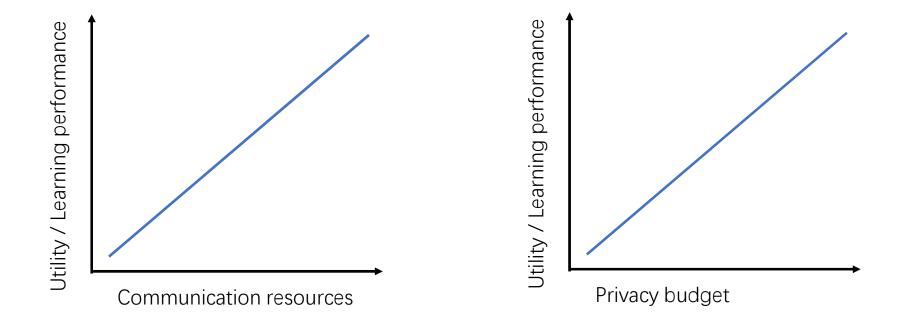
Intuition

Dimensions with larger absolute magnitudes are more important

=> Efficient dimension reduction for LDP

Our Intuition

Common focus on selecting Top dimensions

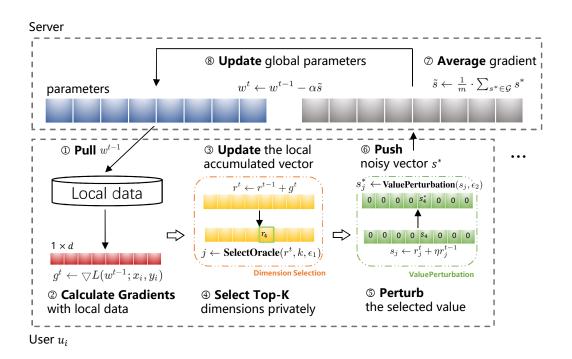


Our Intuition

Common focus on selecting Top dimensions



Two-stage Framework- FedSel



Top-k dimension selection is data-dependent Local vector = Top-k information + value information

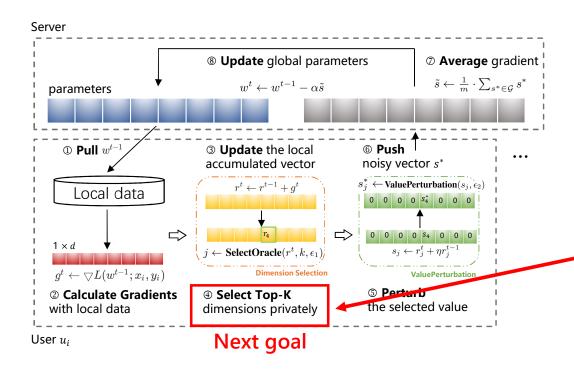
Two-stage framework

Private selection + Value Perturbation

Sequential Composition

- The Top-k selection is ϵ_1 -LDP
- The value perturbation is ϵ_2 -LDP
- => The mechanism is ϵ -LDP, $\epsilon = \epsilon_1 + \epsilon_2$

Two-stage Framework- FedSel



- Top-k dimension selection is data-dependent Local vector = Top-k information + value information
- Two-stage framework

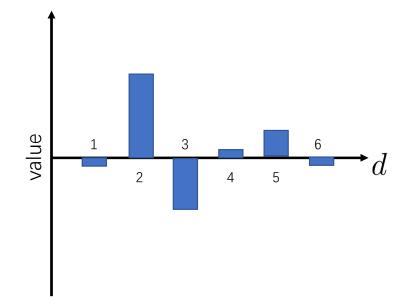
Private selection + Value Perturbation

- Sequential Composition
 - The Top-k selection is ϵ_1 -LDP
 - The value perturbation is ϵ_2 -LDP
 - => The mechanism is ϵ -LDP, $\epsilon = \epsilon_1 + \epsilon_2$

Methods-Exponential Mechanism (EXP)

Sorting and the ranking is denoted with $\{z_1, ..., z_d\} \in \{1, ..., d\}^d$ Sample unevenly with the probability $\frac{\exp(\frac{\epsilon_1 z_j}{d-1})}{\sum_{i=1}^d \exp(\frac{\epsilon_1 z_i}{d-1})}$ 1.

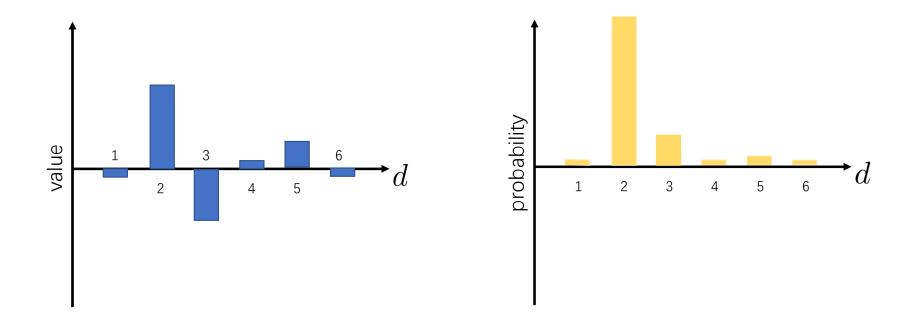
2.



Methods-Exponential Mechanism (EXP)

1.

Sorting and the ranking is denoted with $\{z_1, ..., z_d\} \in \{1, ..., d\}^d$ Sample unevenly with the probability $\frac{\exp(\frac{\epsilon_1 z_j}{d-1})}{\sum_{i=1}^d \exp(\frac{\epsilon_1 z_i}{d-1})}$ 2.

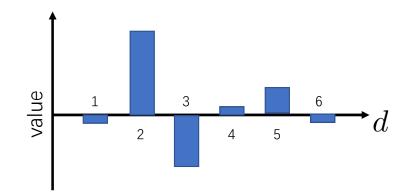


Methods-Perturbed Encoding Mechanism (PE)

- 1. Sorting and the ranking is denoted the Top-k status with $\{z_1, ..., z_d\} \in \{0,1\}^d$
- 2. For each dimension,

to retain status z_j with a larger probability pto flip z_j has a smaller probability 1 - p

3. Sample from dimension set
$$S = \{j | z_i^* = 1\}$$



$$\{z_1, \cdots, z_d\} = \{0, 1, 1, 0, 0, 0\}$$

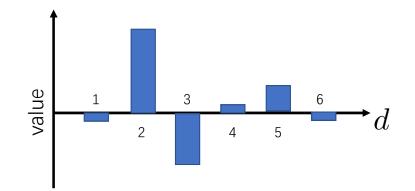
 $p = \frac{e^{\epsilon_1}}{e^{\epsilon_1} + 1}$

Methods-Perturbed Encoding Mechanism (PE)

- 1. Sorting and the ranking is denoted the Top-k status with $\{z_1, ..., z_d\} \in \{0,1\}^d$
- 2. For each dimension,

to retain status z_j with a larger probability pto flip z_j has a smaller probability 1 - p

3. Sample from dimension set
$$S = \{j | z_i^* = 1\}$$



$$\{z_1, \cdots, z_d\} = \{0, 1, 1, 0, 0, 0\}$$
$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$
$$\{\dot{z}_1, \cdots, \dot{z}_d\} = \{0, 0, 1, 0, 1, 0\}$$

 $p = \frac{e^{\epsilon_1}}{e^{\epsilon_1} + 1}$

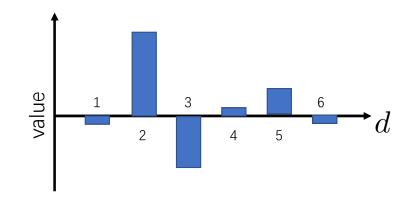
Methods-Perturbed Encoding Mechanism (PE)

- 1. Sorting and the ranking is denoted the Top-k status with $\{z_1, ..., z_d\} \in \{0,1\}^d$
- 2. For each dimension,

to retain status z_j with a larger probability pto flip z_j has a smaller probability 1 - p

$$p = \frac{e^{\epsilon_1}}{e^{\epsilon_1} + 1}$$

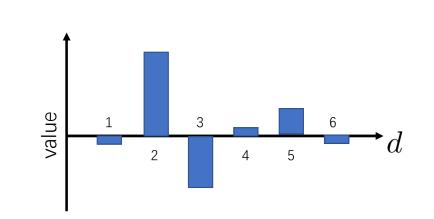
3. Sample from dimension set
$$S = \{j | z_j^* = 1\}$$



Methods-Perturbed Sampling Mechanism (PS)

- 1. Sorting and the ranking is denoted the Top-k status with $\{z_1, ..., z_d\} \in \{0,1\}^d$
- 2. Sample a dimension from:

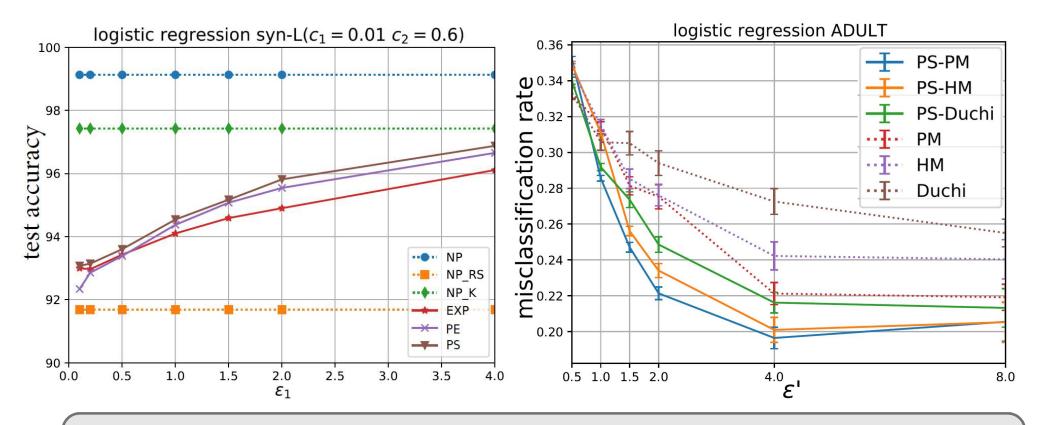
Top-k dimension set, with a larger probability pNon-top dimension set, with a smaller probability 1-p $p = \frac{d^{\epsilon_1} \cdot k}{d-k+e^{\epsilon_1} \cdot k}$



$$\{z_1, \cdots, z_d\} = \{0, 1, 1, 0, 0, 0\}$$

Top-k set $\{2, 3\}$ Non-top set $\{1, 4, 5, 6\}$

Empirical results



Even a small budget in dimension selection helps to increase the learning accuracy
Private Top-k selection helps to improve the learning utility independent of the mechanism for perturbing one dimension.

Empirical results

dataset	model	EXP-gain	EXP-loss	PE-gain	PE-loss	PS-gain	PS-loss
syn-L-0.01-0.9	logistic	8.6074	0.3517	5.410	1.192	5.975	0.4970
syn-L-0.01-0.9	SVM	7.1950	2.1593	3.7704	0.8533	5.065	2.0816
BANK	logistic	2.4197	-0.157	3.2338	0.0464	2.5525	0.1463
BANK	SVM	4.3823	0.4436	3.4369	0.2530	4.0244	0.0164
KDD	logistic	2.0471	0.5091	2.5148	0.2322	2.0171	0.3428
KDD	SVM	1.85629	-0.1625	2.2168	0.2288	1.8291	0.4465
ADULT	logistic	5.5745	0.2935	5.6445	1.3096	6.0535	0.8091
ADULT	SVM	5.5361	0.1949	5.6057	0.9550	5.1442	0.3852

gain = acc(EXP/PE/PS-PM-C) - acc(PM),

loss = acc(EXP/PE/PS-PM-C) - acc(EXP/PE/PS-PM).

What we **gain is much larger** than what we lose from private and efficient Top-k selection

Summary

Conclusion

- We propose a two-stage framework for locally differential private federated SGD
- We propose 3 private selection mechanisms for efficient dimension reduction under LDP

Takeaway

- Private mechanism can be specialized for sparse vector
- Private Top-k dimension selection can improve learning utility under a given privacy level
 Future work
- Optimal hyper-parameter tuning



Thanks