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1. Background




Dilemma of ML

1. Huge amounts of data required

Facebook’ object detection system has been reported to be trained on 3.5 billion images from Instagram.

2. Privacy concerns

Millions of Facebook users' personal data was acquired without the individuals' consent by Cambridge
Analytica, predominantly to be used for political advertising.

3. Expensive datasets

People are becoming increasingly aware of the economic value of their data.




Model Trading

Selling trained ML models

Cheaper than datasets

Buyers do not contact training data.

Relieve privacy concerns
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Existing Model Marketplaces

No privacy protection supported [1, 2]
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[1] Chen et al., “Towards model-based pricing for machine learning in a data marketplace,” SIGMOD, 2019.
[2] Jia et al., “Efficient task-specific data valuation for nearest neighbor algorithms,” PVLDB, 2019.
[3] Agarwal et al., “A marketplace for data: An algorithmic solution,” in ACM-EC, 2019.
_ [4] Liu et al., “Dealer: An end-to-end model marketplace with differential privacy,” PVLDB, 2021. _
O [5] Jiang et al., “Pricing GAN-based data generators under R enyi differential privacy,” Information Sciences, 2022. Q




Problems

1. Unrealistic assumption: trusted broker.
Many giant companies were involved in privacy scandals and data breaches

Data owners need local privacy.

Privacy against both model buyers and the broker

2. Uniform privacy protection levels
Data owners have different privacy preferences

Data owners need personalized privacy protection.

Our goal: to design a model marketplace that supports local and personalized privacy.




Local and Petsomalized Privacy by EL & 1.DP

Federated learning (FL) [6]

Data owners collaboratively train a model by submitting local gradients.
The local gradients are aggregated into a global gradient for model updating.

Local privacy: Training data maintained on the local sides

Local differential privacy (LDP) [7]
Ensure the indistinguishability of any two local gradients.
Local privacy: Data owners perturb local gradients on the local sides.

Personalized privacy: Data owners can set different privacy losses €;.

[6] McMahan et al., “Communication-efficient learning of deep networks from decentralized data,” AISTATS, 2017.
[7] Evfimievski et al., “Limiting privacy breaches in privacy preserving data mining,” PODS, 2003.




FI.-Market: A Model Marketplace with Local
and Personalized Privacy
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Challenges

1. Gradients aggregation under personalized privacy losses

The conventional aggregation method only considers data size.

Ditferent privacy losses result in different accuracy levels
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ing Framework
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1. Model broadcasting: The server broadcasts the
global model.

2. Local training: Each data owner trains its model
on its local data to derive a local gradient.

3. Gradient aggregation: The servers aggregates all
the local gradients to derive a global gradient.

4. Model updating: The server updates the global
model by the global gradient.




FI.-Market

Auction mech.: for gradients procurement

Aggregation mech.: for gradients aggregation
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FI.-Market

Step 2: Bidding
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FI.-Market

Step 3: Privacy loss and payment decision R
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FI.-Market
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Mechanism Design Problems

Aggregation mech.
Ager(eq, ..., €p,dq, ..., dy) = A =[14, ..., 4,]

Objective: To maximize the global gradient’s utility with respect to 4

Auction mech.
Auc(by, ...,b;,B) > €4, ..., €4, D1, - Py
Objective: To maximize the global gradient’s utility with respect to €4, ..., €,

Constraints: truthfulness, individual rationality, budget feasibility...




3. Solution & Ewvaluation




Aggregation Mechanism: OptAgor

Equivalent to a convex quadratic programming problem.
Can be well solved by existing solvers in polynomial time.

Only have nonanalytical solutions

OptAger decides optimal aggregation weights by employing an existing

solver.




Auction Mechanism

Challenge:

OptAggr does not provide an analytical solution
The auction objective is thus also nonanalytical.

Traditional auction theory only deals with analytical objectives.

Solution: Automated mechanism design

To optimize the auction objective by machine learning,




* SOTA automated mechanism design framework
* Allocation network: for allocating privacy losses

* Payment network: for setting payments

* Problems that makes optimization hard:

*  Only for single-unit auctions

Randomized auction results

RegretNet [3]

z; € (0,1),vi
Allocation Network

€;, with probablity z;
~ |0, with probability (1 — z;)

pi, Vi

Payment Network

RegretNet

When all €; = 0, the expected error is unbounded.

[8] Duetting et al., “Optimal auctions through deep learning,” ICML, 2019.




Auction Mechanism: DM-RegretNet

* Support multi-unit auctions

* More possible values of privacy loss e
of M-RegretNet

° Deterministic auction results

€1, e €n, D1y r P

* Given the same bids and budget,
the privacy losses are deterministic

Payment Network
of M-RegretNet




Error Bound

How do DM-RegretNet and OptAggr perform in terms of minimizing the
error bound of the global gradient?
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How do DM-RegretNet and OptAggr perform in terms of optimizing

Model Accuracy

model accuracy?
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Thank you tfor listening!







Local Ditferential Privacy
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Mechanism Design Problems

Aggregation mech:
Agor(eli a6y = = M A
Auction mech:

!/ /
Auc(by, ..., by, B) = €41, ..., €, D1 o) Pr

Truthfulness: Obtain the highest profit by
bidding the real preference.

Individual rationality (IR): Non-negative profit
Budget feasibility (BF)

Problem 1 (Error Bound-Minimizing Aggregation).

min  FRR(gx;e,d) = sup err(gx:e,d
A=Aggr(e,d) (g o ) g1,...I.)gn (g )

S.t: Vi A €[0,1), and > N\ =1
1=1

Problem 2 (Budget-Limited Multi-Unit Multi-Item Procure-
ment Auction).

i Ew 5y[ERR(gx; X = Aggr(e,d
E,p:/rlllgllcl(lb’,B) (v.5) (92; gar(e,d))]

S.t.: Vi e; € [0,€], truthfulness, IR, and BF.




Training DM-RegretNet

1. Inference 2. Aggregation
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Joint Optimization

© Aggregation 1s affected by and feeds back into auction
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