

Flame: Differentially Private Federated Learning in the Shuffle Model

Ruixuan Liu* Yang Cao[†] Hong Chen* Ruoyang Guo* Masatoshi Yoshikawa[†]

Renmin University of China^{*} Kyoto University[†]

Motivation

Privacy in Federated Learning

Sensitive information: age, job, location, etc.

Privacy in Federated Learning

Sensitive information: age, job, location, etc.

Privacy in Federated Learning

Sensitive information: age, job, location, etc.

0

Differential Privacy for Federated Learning

Sensitive information: age, job, location, etc.

Differential Privacy for Federated Learning

Sensitive information: age, job, location, etc.

Local Differential Privacy for Federated Learning

Local Differential Privacy for Federated Learning

Local Differential Privacy for Federated Learning

Dilemma of Privacy-Utility Trade-off

Better Utility

Better Privacy

Backgrounds

Better Trade-off in the Shuffle Model

Better Privacy than DP

Better Utility than LDP

Better Trade-off in the Shuffle Model

Privacy amplification effect from shuffling [SODA'19][CRYPTO'19]

• Given a local privacy budget ϵ_l , the central privacy is amplified $\epsilon_c < \epsilon_l$

[SODA'2019]: Erlingsson L, Feldman V, Mironov I, et al. Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity[M]// Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. 2019. [CRYPTO'2019]: Balle B., Bell J., Gascón A., Nissim K. (2019) The Privacy Blanket of the Shuffle Model. In: Boldyreva A., Micciancio D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science, vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_22

n

Better Trade-off in the Shuffle Model

Less noise due to the privacy amplification effect

• Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

DP model	Local DP	Shuffle DP	Curator
Noise	$\Theta(n^{1/2})$	$\Theta(n^{1/6})$	Θ(1)

[CRYPTO'19]

• Under a given central privacy budget ϵ_c , less local noises are required

 \mathcal{N}

Our Solution

FLAME = Federated Learning in the Shuffle Model

Trust Model of FLAME

Separate trust on different parties

Parties	Shuffler S		Analyzer A			Observer \mathcal{O}	
Sensitive info	gradien	gradient vector		gradient vector			auoru modol
	index	value	ID	index	value	ID	query moder
DP-FL	NI/A		\checkmark		\checkmark		
LDP-FL	IN/A			(ϵ_c, δ_c) -LDP		\checkmark	(ϵ_c, δ_c) -DP
FLAME	×	×	\checkmark	$(\epsilon_c, \delta$	$_{c})$ -DP	×	
/· trusted V· untrusted							

 $\sqrt{:}$ trusted, \times : untrusted.

(2) distribute θ^{t-1}

③ encode

Privacy Definition

Neighboring datasets: Any two datasets that differ by replacing one user's update

$\Pr[M(X) \in S] \le e^{\epsilon} \Pr[M(X') \in S] + \delta$

for each user
$$i \in [n]$$
 do
 $x_i \leftarrow \text{LocalUpdate}(\theta^{t-1})$
 $\triangleright \text{Encoding } \mathcal{E}$ by each user
 $\bar{x}_i \leftarrow \text{Clip}(x_i, -C, C)$
 $\tilde{x}_i \leftarrow (\bar{x}_i + C)/(2C)$
 $\langle idx_i, y_i \rangle \leftarrow \text{Randomize}(\tilde{x}_i, \epsilon_l)$
 $c_i \leftarrow \text{Enc}_{pk_a}(y_i)$
user i sends $m_i = \langle idx_i, c_i \rangle$ to Shuffler
end for

• Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

 $\epsilon_l \to_d \epsilon_{ld} = \epsilon_l/d$

• Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

 $\epsilon_l \rightarrow_d \epsilon_{ld} = \epsilon_l / d \rightarrow_s \epsilon_{cd}$

• Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

 $\epsilon_l \rightarrow_d \epsilon_{ld} = \epsilon_l/d \rightarrow_s \epsilon_{cd} \rightarrow_c \epsilon_c$

• Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

 $\mathsf{idx}_i \leftarrow \{1, \cdots, d\}$ $y_i \leftarrow \{R_{\epsilon_{ld}}(x_{i,1}), \cdots, R_{\epsilon_{ld}}(x_{i,d})\}$

for each user
$$i \in [n]$$
 do
 $x_i \leftarrow \text{LocalUpdate}(\theta^{t-1})$
 $\triangleright \text{Encoding } \mathcal{E}$ by each user
 $\bar{x}_i \leftarrow \text{Clip}(x_i, -C, C)$
 $\tilde{x}_i \leftarrow (\bar{x}_i + C)/(2C)$
 $\langle idx_i, y_i \rangle \leftarrow \text{Randomize}(\tilde{x}_i, \epsilon_l)$
 $c_i \leftarrow \text{Enc}_{pk_a}(y_i)$
user i sends $m_i = \langle idx_i, c_i \rangle$ to Shuffler
end for

 $\mathsf{idx}_i \leftarrow \{1, \cdots, d\}$ $y_i \leftarrow \{R_{\epsilon_{ld}}(x_{i,1}), \cdots, R_{\epsilon_{ld}}(x_{i,d})\}$

Learns nothing from the plaintext of index (full index list is not sensitive)
Learns nothing from the encrypted values

(does not have the key to decrypt)

for each user
$$i \in [n]$$
 do
 $x_i \leftarrow \text{LocalUpdate}(\theta^{t-1})$
 $\triangleright \text{Encoding } \mathcal{E}$ by each user
 $\bar{x}_i \leftarrow \text{Clip}(x_i, -C, C)$
 $\tilde{x}_i \leftarrow (\bar{x}_i + C)/(2C)$
 $\langle idx_i, y_i \rangle \leftarrow \text{Randomize}(\tilde{x}_i, \epsilon_l)$
 $c_i \leftarrow \text{Enc}_{pk_a}(y_i)$
user i sends $m_i = \langle idx_i, c_i \rangle$ to Shuffler
end for

Problem of SS-Simple

• Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

Problem

small budget (large noise) for each value

Problem of SS-Simple

Demo task: *n* users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^{n} x_i$

Problem

small budget (large noise) for each value

• A typical way for perturbing multi-dimensional vector sample and perturb a fraction of dimensions

$$O(d) \to O(\sqrt{d})$$

[ICDE'2019]

Double amplification solution: SS-Double

DP naturally holds for LDP

 $\epsilon_l \rightarrow \epsilon_c = \epsilon_l$

Double amplification solution: SS-Double

Privacy amplification by shuffling

 $\epsilon_l \to_d \epsilon_{ld} = \epsilon_l/d \to_s \epsilon_{cd} \to_c \epsilon_c$

Double amplification solution: SS-Double

Double privacy amplification

 $\epsilon_l \rightarrow_d \epsilon_{lk} = \epsilon_l / k \rightarrow_s \epsilon_{ck} \rightarrow_{smp} \epsilon_{cd} \rightarrow_c \epsilon_c$

Dummy padding for SS-Double

Challenge

- subsampling may lead to two neighboring sub-datasets with distinct size

Solution

Let the shuffler pad each dimension to the same size with dummy values

• proof of privacy amplification by shuffling relies on bounded-size neighboring datasets

42

Dummy padding for SS-Double

Challenge

- subsampling may lead to two neighboring sub-datasets with distinct size

Solution

Let the shuffler pad each dimension to the same size with dummy values

proof of privacy amplification by shuffling relies on bounded-size neighboring datasets

43

Utility boosting solution: SS-Topk

Insight

- The random subsampling treats all dimensions equally and thus may discard "important" dimensions
- Top-k sparsification [EMNLP'2017] is an efficient and general technique to boost the learning performance

Challenge

- Selecting Top-k is data-dependent Explicitly revealing Top-k index to the shuffler has privacy risks

Goal

Define and control the information leakage from Top-k index while maintaining the utility as far as possible

Utility boosting solution: SS-Topk Index-privacy

 $0|\mathcal{K}^{\beta}_{\nu}(j)| \geq \frac{\Pr[\mathbb{I}_{j}=0]}{\cdots}.$

Definition 3 A mechanism $\mathcal{K}^{\beta}_{\nu}$ provides ν -index privacy for a d-dimensional vector, if and only if for any $j \in [d], \nu \geq 1$, we have: $\Pr[\mathbb{I}_j = 1 | \mathcal{K}_{\nu}^{\beta}(j)] \leq \nu \cdot \Pr[\mathbb{I}_j = 1]$ and $\Pr[\mathbb{I}_j = 1]$

Utility boosting solution: SS-Topk Index-privacy

Definition 3 A mechanism $\mathcal{K}_{\nu}^{\beta}$ provides ν -index privacy for a d-dimensional vector, if and only if for any $j \in [d], \nu \geq 1$, we have: $\Pr[\mathbb{I}_j = 1 | \mathcal{K}_{\nu}^{\beta}(j)] \leq \nu \Pr[\mathbb{I}_j = 1]$ and $\Pr[\mathbb{I}_j = 0 | \mathcal{K}_{\nu}^{\beta}(j)] \geq \frac{\Pr[\mathbb{I}_j = 0]}{\nu}$.

Utility boosting solution: SS-Topk Index-privacy

v-index privacy, valid *l* for given *v* 50 $\beta = 0.02$ $\beta = 0.06$ $\beta = 0.1$ 40 30 20 10 30 10 20 40 U ν

Proposition 2 The range of ν -index privacy is $1 \leq \nu \leq \frac{1}{\beta}$, where the strongest index privacy $\nu = 1$ is achieved when $l = \lceil \frac{1}{\beta} \rceil$ and no index privacy is achieved when l = 1.

Theorem 5 Given a protocol with $\mathcal{K}^{\beta}_{\nu}$, n_p , the strongest index privacy it allows for each user is $\nu = \max\{1, \frac{1}{|\frac{n_p}{m_s^{\beta}}| \cdot \beta}\}.$

JU

Each Top-k index is hidden in *l* indexes

Double privacy amplification effect

• The magnification ratio ϵ_1/ϵ_c is enlarged by dozens of times with double amplification • The improvement is more significant for a larger *d*

Utilities

• SS-Topk > DP-FL > SS-Double > SS-Simple > LDP-FL

The performance of LDP-FL is no greater than random guessing in the highdimensional case with d=7850, n=1000

Utilities

• SS-Topk > DP-FL > SS-Double > SS-Simple > LDP-FL

• The central privacy is enhanced by Double amplification from 0.91 to 0.24

Utilities

• SS-Topk > DP-FL > SS-Double > SS-Simple > LDP-FL

• The random subsampling of SS-Double reduces injected error in the averaged vector

Utilities

SS-Topk > DP-FL > SS-Double > SS-Simple > LDP-FL

[NeurIPS'2019]

"gradient compression successfully defends the attack with the pruned gradient is more than 20%"

- With the same padding size, Topk strategy in SS-Topk boosts the utility significantly
- The index privacy level against the shuffler is v = 3.125, l = 16
- The random subsampling of **SSDouble reduces injected error** in the averaged vector

Variant parameters

- Higher ratio of n/n_p indicates less noise is injected
- Larger sampling ratio implies better utility

• A larger local privacy budget for each dimension leads to higher testing accuracy

Takeaways

- Multi-fold privacy amplification effect is a promising way to bound privacy in practice for better utility
 Separating trust on different parties largely reduces the privacy leakage while maintaining utility
 How far a privacy attack can go under a certain index-privacy level
 - without revealing corresponding values is an open question

