

Flame: Differentially Private Federated Learning in the Shuffle Model

Renmin University of China* Kyoto University†

Ruixuan Liu* Yang Cao[†] Hong Chen* Ruoyang Guo^{*} Masatoshi Yoshikawa†

Motivation

Privacy in Federated Learning

Sensitive information: age, job, location, etc.

Sensitive information: age, job, location, etc.

Privacy in Federated Learning

Sensitive information: age, job, location, etc.

Privacy in Federated Learning

 \overline{O}

Differential Privacy for Federated Learning

Sensitive information: age, job, location, etc.

Differential Privacy for Federated Learning

Sensitive information: age, job, location, etc.

Local Differential Privacy for Federated Learning

+noise

 \sum

 \circ

 $\overline{\circ}$

Local Differential Privacy for Federated Learning

Local Differential Privacy for Federated Learning

case: # users < # dimensions

Dilemma of Privacy-Utility Trade-off

Better Utility Manual Petter Privacy

Backgrounds

Better Trade-off in the Shuffle Model

Better Utility than LDP

Better Privacy than DP

Better Trade-off in the Shuffle Model

Privacy amplification effect from shuffling [SODA'19][CRYPTO'19]

• Given a local privacy budget ϵ_l , the central privacy is amplified $\epsilon_c < \epsilon_l$

 \boldsymbol{n}

[SODA'2019]: Erlingsson L, Feldman V, Mironov I, et al. Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity[M]// Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. 2019. [CRYPTO'2019]: Balle B., Bell J., Gascón A., Nissim K. (2019) The Privacy Blanket of the Shuffle Model. In: Boldyreva A., Micciancio D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science, vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_22

Better Trade-off in the Shuffle Model

• Under a given central privacy budget ϵ_c , less local noises are required

Less noise due to the privacy amplification effect

• Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

[CRYPTO'19]

 \boldsymbol{n}

Our Solution

FLAME = Federated Learning in the Shuffle Model

Trust Model of FLAME

Separate trust on different parties

 $\sqrt{ }$: trusted, \times : untrusted.

3 **encode**

 \sim $-$

Privacy Definition

Neighboring datasets: Any two datasets that differ by replacing one user's update

$Pr[M(X) \in S] \leq e^{\epsilon} Pr[M(X') \in S] + \delta$

\nfor each user
$$
i \in [n]
$$
 do $x_i \leftarrow \text{LocalUpdate}(\theta^{t-1})$ \triangleright $\text{Encoder}(\theta^{t-1})$ \triangleright $\overline{x}_i \leftarrow \text{Clip}(x_i, -C, C)$ $\tilde{x}_i \leftarrow (\bar{x}_i + C)/(2C)$ $\langle i dx_i, y_i \rangle \leftarrow \text{Randomize}(\tilde{x}_i, \epsilon_i)$ $c_i \leftarrow \text{Enc}_{p k_a}(y_i)$ $\text{user } i \text{ sends } m_i = \langle i dx_i, c_i \rangle \text{ to Shuffler}$ \n

Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

 $\epsilon_l \rightarrow_d \epsilon_{ld} = \epsilon_l/d$

Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^{n} x_i$

 $\epsilon_l \rightarrow_d \epsilon_{ld} = \epsilon_l/d \rightarrow_s \epsilon_{cd}$

Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^{n} x_i$

 $\epsilon_l \rightarrow_d \epsilon_{ld} = \epsilon_l/d \rightarrow_s \epsilon_{cd} \rightarrow_c \epsilon_c$

Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^{n} x_i$

 $idx_i \leftarrow \{1, \dots, d\}$ $y_i \leftarrow \{R_{\epsilon_{ld}}(x_{i,1}), \cdots, R_{\epsilon_{ld}}(x_{i,d})\}$

```
\nfor each user 
$$
i \in [n]
$$
 do\n $x_i \leftarrow \text{LocalUpdate}(\theta^{t-1})$ \n $\triangleright \text{Encoding } \mathcal{E} \text{ by each user}$ \n $\bar{x}_i \leftarrow \text{Clip}(x_i, -C, C)$ \n $\tilde{x}_i \leftarrow (\bar{x}_i + C)/(2C)$ \n $\langle i dx_i, y_i \rangle \leftarrow \text{Randomize}(\tilde{x}_i, \epsilon_i)$ \n $c_i \leftarrow \text{Enc}_{pk_a}(y_i)$ \nuser  $i$  sends  $m_i = \langle i dx_i, c_i \rangle$  to Shuffler\nend for\n
```


 $idx_i \leftarrow \{1, \dots, d\}$ $y_i \leftarrow \{R_{\epsilon_{ld}}(x_{i,1}), \dots, R_{\epsilon_{ld}}(x_{i,d})\}$

- Learns nothing from the plaintext of index (full index list is not sensitive) • Learns nothing from the encrypted values
	- (does not have the key to decrypt)

```
\nfor each user 
$$
i \in [n]
$$
 do\n $x_i \leftarrow \text{LocalUpdate}(\theta^{t-1})$ \n $\triangleright \text{Encoding } \mathcal{E} \text{ by each user}$ \n $\bar{x}_i \leftarrow \text{Clip}(x_i, -C, C)$ \n $\tilde{x}_i \leftarrow (\bar{x}_i + C)/(2C)$ \n $\langle i dx_i, y_i \rangle \leftarrow \text{Randomize}(\tilde{x}_i, \epsilon_l)$ \n $c_i \leftarrow \text{Enc}_{pk_a}(y_i)$ \nuser  $i$  sends  $m_i = \langle i dx_i, c_i \rangle$  to Shuffler\nend for\n
```


• Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

• Problem

small budget (large noise) for each value

Problem of SS-Simple

Demo task: n users, each holds a private value $x_i \in [0,1]$. Estimate $\sum_{i=1}^n x_i$

• Problem

small budget (large noise) for each value

• A typical way for perturbing multi-dimensional vector sample and perturb a fraction of dimensions

$$
O(d) \to O(\sqrt{d})
$$

[ICDE'2019] ³⁸

Problem of SS-Simple

Double amplification solution: SS-Double

DP naturally holds for LDP

 $\epsilon_l \rightarrow \epsilon_c = \epsilon_l$

Double amplification solution: SS-Double

Privacy amplification by shuffling

 $\epsilon_l \rightarrow_d \epsilon_{ld} = \epsilon_l/d \rightarrow_s \epsilon_{cd} \rightarrow_c \epsilon_c$

Double amplification solution: SS-Double

Double privacy amplification

 $\epsilon_l \rightarrow_d \epsilon_{lk} = \epsilon_l / k \rightarrow_s \epsilon_{ck} \rightarrow_{smp} \epsilon_{cd} \rightarrow_c \epsilon_c$

Dummy padding for SS-Double

Challenge

-
- subsampling may lead to two neighboring sub-datasets with distinct size

Solution

• Let the shuffler pad each dimension to the same size with dummy values

• proof of privacy amplification by shuffling relies on bounded-size neighboring datasets

42

Dummy padding for SS-Double

• proof of privacy amplification by shuffling relies on bounded-size neighboring datasets

43

Challenge

-
- subsampling may lead to two neighboring sub-datasets with distinct size

Solution

• Let the shuffler pad each dimension to the same size with dummy values

Utility boosting solution: SS-Topk

Insight

- The random subsampling treats all dimensions equally and thus may discard "important" dimensions
- Top-k sparsification [EMNLP'2017] is an efficient and general technique to boost the learning performance

-
- Selecting Top-k is data-dependent • Explicitly revealing Top-k index to the shuffler has privacy risks

Challenge

Goal

• Define and control the information leakage from Top-k index while maintaining the utility as far as possible

Utility boosting solution: SS-Topk Index-privacy

 $0|\mathcal{K}_\nu^{\beta}(j)| \geq \frac{\Pr[\mathbb{I}_j=0]}{n}$

Definition 3 A mechanism $\mathcal{K}_{\nu}^{\beta}$ provides *v*-index privacy for *a d-dimensional vector, if and only if for any* $j \in [d], \nu \ge 1$ *, we have:* $\Pr[\mathbb{I}_j = 1 | \mathcal{K}_\nu^\beta(j)] \le \nu \cdot \Pr[\mathbb{I}_j = 1]$ and $\Pr[\mathbb{I}_j = 1]$

Utility boosting solution: SS-Topk Index-privacy

Definition 3 A mechanism $\mathcal{K}_{\nu}^{\beta}$ provides *v*-index privacy for a d-dimensional vector, if and only if for any $j \in [d], \nu \geq 1$,
we have: $\Pr[\mathbb{I}_j = 1 | \mathcal{K}^{\beta}_{\nu}(j)] \leq \nu$ $\Pr[\mathbb{I}_j = 1]$ and $\Pr[\mathbb{I}_j = 1]$ $0|\mathcal{K}_{\nu}^{\beta}(j)| \geq \frac{\Pr[\mathbb{I}_{j} = 0]}{\nu}.$

Utility boosting solution: SS-Topk Index-privacy

 ν -index privacy, valid / for given ν 50 $\beta = 0.02$ $\beta = 0.06$ $\beta = 0.1$ 40 $30¹$ 20 10 30 10 20 40 $\mathbf U$ $\boldsymbol{\nu}$

Proposition 2 The range of v-index privacy is $1 \le \nu \le \frac{1}{\beta}$, where the strongest index privacy $\nu = 1$ is achieved when $l = \lceil \frac{1}{\beta} \rceil$ and no index privacy is achieved when $l = 1$.

Theorem 5 Given a protocol with $\mathcal{K}_{\nu}^{\beta}$, n_p , the strongest index privacy it allows for each user is $\nu = \max\{1, \frac{1}{\lfloor \frac{n_p}{n_g} \rfloor \cdot \beta}\}.$

47

DC

Each Top-k index is hidden in l indexes

Double privacy amplification effect

-
- The improvement is more significant for a larger d

• The magnification ratio ϵ_l/ϵ_c is enlarged by dozens of times with double amplification

Utilities

• SS-Topk > DP-FL > SS-Double > SS-Simple > LDP-FL

The performance of LDP-FL is no greater than random guessing in the highdimensional case with d=7850, n=1000

Utilities

• SS-Topk > DP-FL > SS-Double > SS-Simple > LDP-FL

• The central privacy is enhanced by Double amplification from 0.91 to 0.24

Utilities

• SS-Topk > DP-FL > SS-Double > SS-Simple > LDP-FL

• The random subsampling of SS-Double reduces injected error in the averaged vector

Utilities

• SS-Topk > DP-FL > SS-Double > SS-Simple > LDP-FL

- With the same padding size, Topk strategy in SS-Topk boosts the utility significantly
- The index privacy level against the shuffler is $v = 3.125$, $l = 16$
- The random subsampling of SSDouble reduces injected error in the averaged vector

[NeurIPS'2019]

"gradient compression successfully defends the attack with the pruned gradient is more than 20%"

Variant parameters

• A larger local privacy budget for each dimension leads to higher testing accuracy

-
- Higher ratio of n/n_p indicates less noise is injected
- Larger sampling ratio implies better utility

Takeaways

- \triangleright Multi-fold privacy amplification effect is a promising way to bound privacy in practice for better utility \triangleright Separating trust on different parties largely reduces the privacy leakage while maintaining utility Ø How far a privacy attack can go under a certain index-privacy level
	- without revealing corresponding values is an open question

