# Quantifying Differential Privacy Under Temporal Correlations



Yang Cao\*#, Masatoshi Yoshikawa\*, Yonghui Xiao#, Li Xiong#

\* Kyoto University, Department of Social Informatics





# Abstract

- Differential Privacy (DP) has received increasing attention as a rigorous privacy framework.
- However, many existing studies assume that the data are independent.
- In this work, we investigated how to satisfy DP on temporally correlated data by finely analyzing, calculating and preventing the potential extra privacy loss under temporal correlations.

# Problem

#### What is DP?

• ε-Differential Privacy (ε-DP) is a de facto **privacy definition** for Privacy Persevering Data Analysis.

DP mechanism M guarantees that each record has slight effect (bounded by  $\varepsilon$ ) on the output.



• Formally, M satisfies:

$$PL_{0}(\mathcal{M}) \triangleq \sup_{r, l_{i}, l'_{i}} \log \frac{\Pr(r \mid l_{i}, D_{\mathcal{K}})}{\Pr(r \mid l'_{i}, D_{\mathcal{K}})} \leq \varepsilon$$

output, i.e., M(Q(D))=rpossible data of user i Knowledge of Ai

ε is a metric of privacy leakage. ε ω, privacy ...

### What is the problem of DP under Temporal Correlation?

Temporal correlations may degrade the privacy guarantee!



## Solution

### Analyzing the potential privacy loss

Model temporal correlations using Markov Chain



The Temporal Privacy Leakage (TPL) includes FPL & BPL

$$TPL(\mathcal{M}^{t}) \triangleq \sup \log \frac{\Pr(r^{1}, \dots, r^{t} \mid l_{i}^{t}, D_{\mathcal{K}}^{t})}{\Pr(r^{1}, \dots, r^{t} \mid l_{i}^{t'}, D_{\mathcal{K}}^{t})} + \sup \log \frac{\Pr(r^{t}, \dots, r^{T} \mid l_{i}^{t}, D_{\mathcal{K}}^{t})}{\Pr(r^{t}, \dots, r^{T} \mid l_{i}^{t'}, D_{\mathcal{K}}^{t})} - PL_{0}(\mathcal{M}^{t})$$

$$BPL(\mathcal{M}^{t})$$

$$FPL(\mathcal{M}^{t})$$

# Solution (cont')

### Calculating the privacy loss

- The calculation of BPL/FPL is to solve Linear-Fractional Program
- Traditionally, it takes O(2<sup>n</sup>) time complexity, our algorithm O(n<sup>2</sup>)



### Preventing the extra privacy loss

• Given P<sub>i</sub>F/P<sub>i</sub>B, is there a **limit** of the increase of BPL/FPL?



• Two strategies for preventing extra privacy loss of DP:





# Experiments

Runtime of our privacy loss quantification algorithm.



Impact of temporal correlations on privacy loss s=0.005 ~ mediate corr.



## Conclusions

- Temporal correlations may result in extra privacy loss of DP.
- Such unexpected privacy loss may increase over time.
- We prevent this undesired privacy loss by allocating proper ε.

#### **Application**

- Convert a traditional DP mechanism into one prevent against TPL under temporal correlations.

### **Extensions**

- How to learn appropriate temporal correlations?
- How to model/quantify DP under other types of correlations?
- Is there a better way to prevent TPL (e.g., utilize temporal corr.)?
- Source Code: https://github.com/brahms2013/TPL