Quantifying Differential Privacy Under Temporal Correlations
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» Calculating the privacy loss
e [he calculation of BPL/FPL is to solve Linear-Fractional Program
ly, it takes O(2n) time complexity, our algorithm O(n2)

» Differential Privacy (DP) has received increasing attention
as a rigorous privacy framework.
 However, many existing studies assume that the data are
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> Preventing the extra privacy loss
e Given PiF/PiB, is there a limit of the increase of BPL/FPL?
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DP mechanism M guarantees that each record has slight . | . D
e WO strategies for preventing extra privacy loss of DP:
effect (bounded by €) on the output.
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(b) when T is known (T=30)
Bounding TPL by quantification

Dy Knowledge of A

¢ is a metric of privacy leakage. € &J, privacy k4.

> Runtime of our privacy loss quantification algorithm.

> What is the problem of DP under Temporal Correlation?
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Conclusions

* Model temporal correlations using Markov Chain
e.g., useri:loci— locz— loco— ...

(a) Transition Matrix Pr(Z"'|l}) (b) Transition Matrix Pr(//|{/™")
time t-1 time t _ _ _
+ Temporal correlations may result in extra privacy loss of DP.
loci | locz | locs loc1 |locz | locs + Such unexpected privacy loss may increase over time.
~ loci| 0110207 w loci| 0210305 + We prevent this undesired privacy loss by allocating proper €.
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« [he Temporal Privacy Leakage (TPL) includes FPL & BPL

under temporal correlations.

Extensions
- How to learn appropriate temporal correlations?

Biga s sl p )
Rile = 7= [l D)
BPL(M")

Pife ra |- D) _PLM) - How to model/quantity DP under other types of correlations?
Bigt = | Do) ’ - |s there a better way to prevent TPL (e.qg., utilize temporal corr.)?

FPL(M") » Source Code:https://github.com/brahms2013/TPL
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