PGLP: Customizable and Rigorous Location Privacy through Policy Graph

¹ Kyoto University, ² Emory University, ³ Samsung Research America

ESORICS 2020

Yang Cao¹, Yonghui Xiao², Shun Takagi¹, Li Xiong², Masatoshi Yoshikawa¹, Yilin Shen³, Jinfei Liu², Hongxia Jin³, and Xiaofeng Xu²

Motivation

— why we need a customizable and rigorous location privacy model.

- Our Solution: Policy Graph based Location Privacy (PGLP) — a flexible interface for location privacy to tune privacy-utility tradeoffs.
- PGLP for Location Trace Release challenges and countermeasures when using PGLP continuously.
- Experiments
- Conclusion & Future work

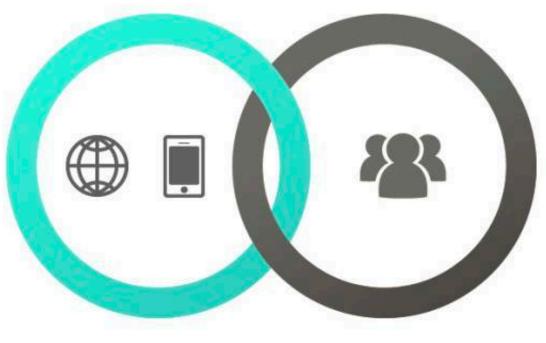
- Motivation
 - why we need a customizable and rigorous location privacy model.
- Our Solution: Policy Graph based Location Privacy (PGLP)
- PGLP for Location Trace Release - challenges and countermeasures when using PGLP continuously.
- Experiments
- **Conclusion & Future work**

Motivation

Location data: valuable but sen

Useful in our daily life for Location-bas

• Fundamental in research areas IoT, Crowdsourcing, Smart City..

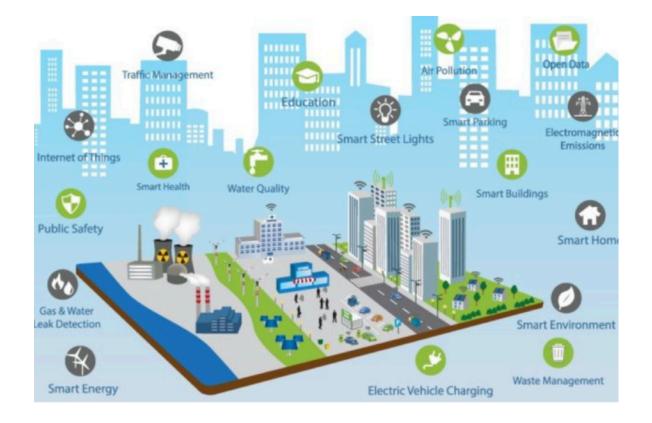


Online to Offline



YAHOO

nsitive		docomo 4G7:18Image: T * 85%PrivacyLocation Services	
		Day One	✓ While Using >
sed Service (LBS)	ii	Find Friends	While Using >
	Find iPhone	While Using >	
Uber 食べログ	M	Gmail	Never >
	2	Google Maps	While Using >
		Google Photos	Never >
<u> </u>		Messages	While Using >



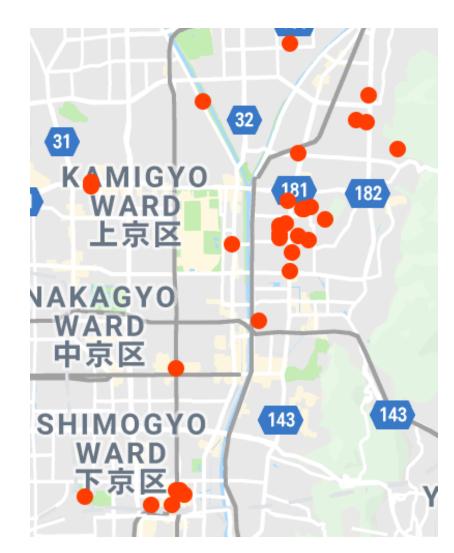
Motivation

Location data: valuable but sensitive

risky for an individual

reveal many sensitive info: identification, home, office, lifestyle, hobbies...

risky for companies who utilize user location data



Google Map "frequently visited locations"

Motivation

How to Protect Location Privacy

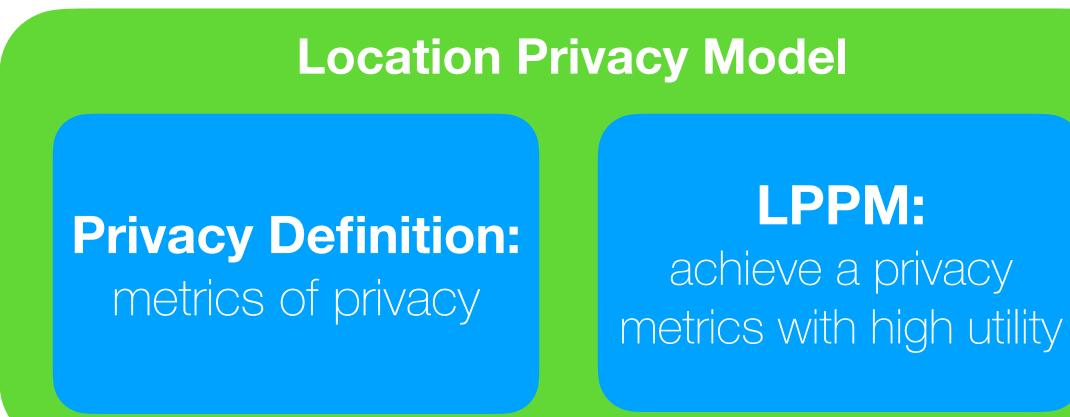
general idea: add uncertainty to the true location

true loc.

noisy loc. Location

Privacy Protection Mechanis

general research goal: better tradeoff between privacy and utility

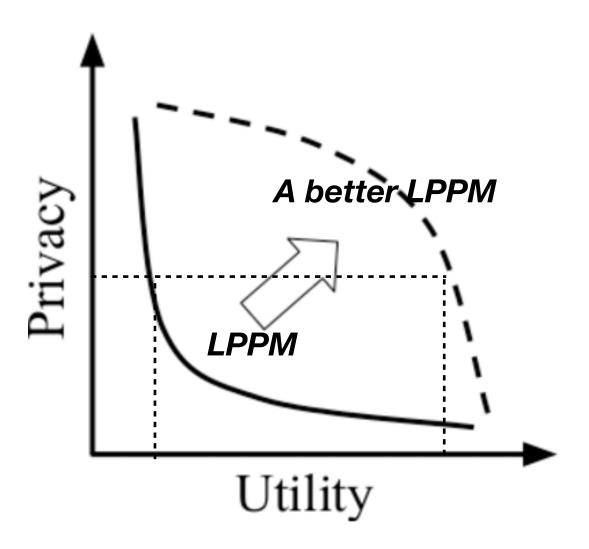


"what is weather tomorrow near my location?"

My location = Kyoto University better utility

My location = *Kyoto City.*

better privacy



Motivation Existing Location Privacy Definitions

extended from K-anonymity

Iocation k-anonymity, [MobiSys03].

▶mix zone, [PerCom03].

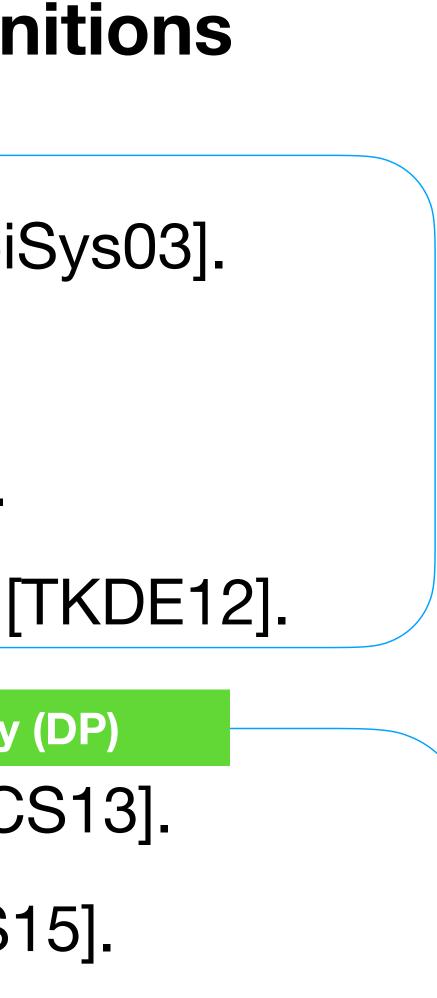
► The New Casper [VLDB06].

maximum arrival boundary [TKDE12].

extended from Differential Privacy (DP)

► Geo-Indistinguishability [CCS13].

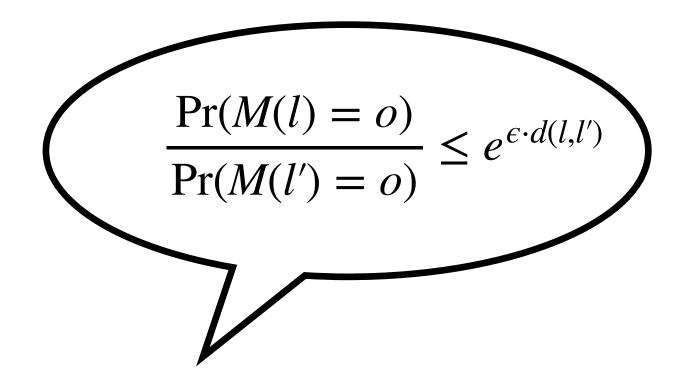
►δ-location set privacy [CCS15].



Motivation Existing Location Privacy Definitions are Not Sufficient

- K-anonymity based Location privacy is not rigorous
 - L-diversity argue K-anonymity has flaws
 - T-closeness say: L-diversity has flaws

- Existing DP-based location privacy is not customizable
 - Only use one parameter ε to control the privacy-utility trade-off.
 - However, different LBS may have different requirements on privacy or utility.



Motivation **Different LBS, Different Utility Requirement**

- City-level weather forecast
 - Query: which city is the user in?
 - High utility when the noisy location is in the same city of the true location.
- Location-based advertising
 - Query: what kind of loc. (shopping mall/restaurant) is the user in?
 - High utility when the noisy location has the same category of the true location.
- Location-based Social Network
 - Query: where is my nearest friend?
 - High utility when the distance between two noisy locations is similar to the distance between the true locations.

Location Privacy Protection Mechanism (North) \mathbf{s}_6 \mathbf{s}_5 Ψ1 \mathbf{s}_4 W 1 <u>**S**</u>2 \mathbf{S}^{-} (East)

true loc.

noisy loc.

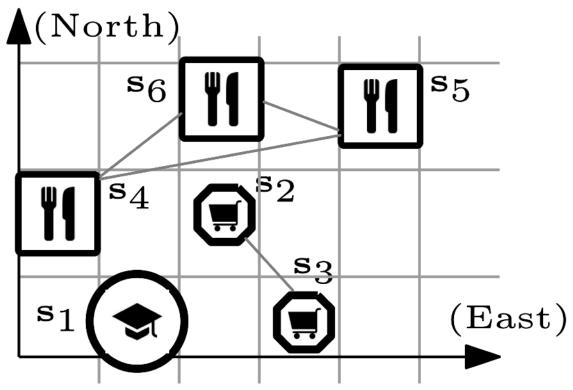
- Motivation — why we need a customizable and rigorous location privacy model.
- Our Solution: Policy Graph based Location Privacy (PGLP)
- PGLP for Location Trace Release - challenges and countermeasures when using PGLP continuously.
- Experiments
- **Conclusion & Future work**

Our Solution Intuitions for a Customizable and Rigorous Location Privacy

- Inspired by Blowfish Privacy [SIGMOD14], the privacy-utility Tradeoff can be finetuned by "Privacy Policies":
 - secrets: what are the secrets that we need to protect?
 - constraints: what does the adversary know?
- However, Blowfish Privacy cannot be directly applied in location privacy.
 - Location privacy: single user, point query on single record (location).
 - Statistical privacy: multiple users, aggregate query on a database.
- How to formalize Location Privacy Policy and how to achieve it?

Our Solution : PGLP Location Policy Graphs

- How to formalize these polices? Location Privacy Policy Graph
 - Nodes: the user's possible locations.
 - Edges: the two connected locations need to be indistinguishable to the adversary
- The right policy is a good fit for "Location-based advertising"
 - High utility if the noisy location has the same category of the true location. \bullet



Policy: "allowing the app to access the semantic category (e.g., a restaurant or a shop) of a user's location but ensuring indistinguishability among locations with the same category"

Our Solution : PGLP Definition

- Location Policy Graph:

Definition 3 (Location Policy Graph). A location policy graph is an undirected graph $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ where \mathcal{S} denotes all the locations (nodes) and \mathcal{E} represents indistinguishability (edges) between these locations.

Policy Graph-based Location Privacy:

Definition 6 ($\{\epsilon, \mathcal{G}\}$ -Location Privacy). A randomized algorithm \mathcal{A} satisfies $\{\epsilon, \mathcal{G}\}$ -location privacy iff for all $\mathbf{z} \subseteq Range(\mathcal{A})$ and for all pairs of neighbors \mathbf{s} and s' in \mathcal{G} , we have $\frac{\Pr(\mathcal{A}(s)=z)}{\Pr(\mathcal{A}(s')=z)} \leq e^{\epsilon}$.

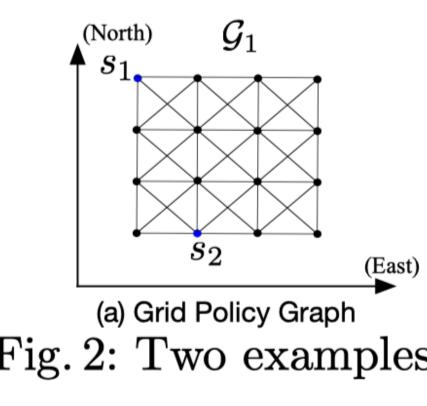
key idea: only satisfy the indistinguishability defined in the given policy graph.

Our Solution : PGLP Definition

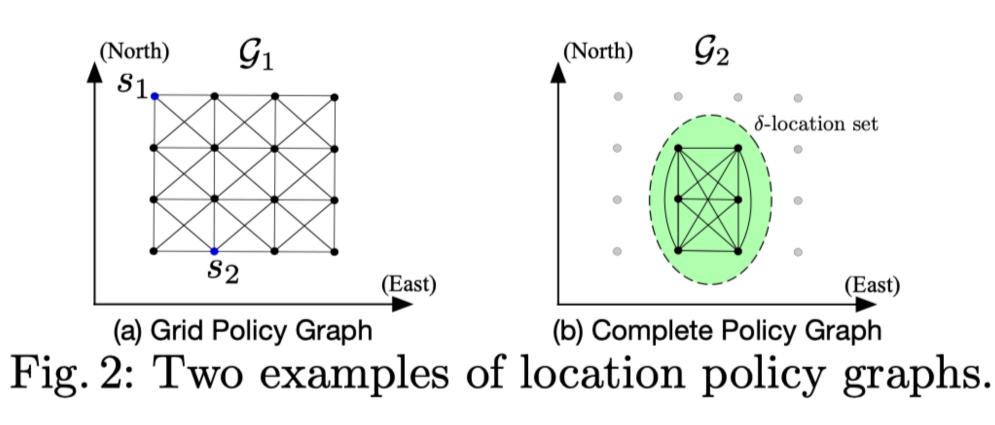
- PGLP is a generalization of DP-based location privacy definitions.
 - it reduces to Geo-Indistinguishability [CCS13] and δ -location set privacy [CCS15] under \bullet different configuration of the policy graph.

Geo-Indistinguishability.

Location Set privacy.



- **Theorem 1.** An algorithm satisfying $\{\epsilon, \mathcal{G}_1\}$ -location privacy also achieves ϵ -
- **Theorem 2.** An algorithm satisfying $\{\epsilon, \mathcal{G}_2\}$ -location privacy also achieves δ -



Our Solution : PGLP Mechanisms

key idea: calibrate the sensitivity w.r.t. a given policy graph.

Algorithm 1 Policy-based Laplace Mechanism (P-LM)

Require: ϵ , \mathcal{G} , the user's true location **s**.

- 1: Calculate $S_f^{\mathcal{G}} = sup||(f(\mathbf{s}) f(\mathbf{s}'))/d_{\mathcal{G}}(\mathbf{s}, \mathbf{s}')||_1$
- 2: Perturb location $\mathbf{z}' = f(\mathbf{s}) + [Lap(S_f^{\mathcal{G}}/\epsilon), Lap(Z_f^{\mathcal{G}}/\epsilon)]$
- 3: return a location $\mathbf{z} \in \mathcal{S}$ that is closest to \mathbf{z}' on

Algorithm 2 Policy-based Planar Isotropic Mechanism (P-PIM)

Require: ϵ , \mathcal{G} , the user's true location **s**. 1: Calculate $K(\mathcal{G}) = Conv || (f(\mathbf{s}) - f(\mathbf{s}')) / d_{\mathcal{G}}(\mathbf{s}, \mathbf{s}') ||_1$ for all $\mathbf{s}' \in \mathcal{N}^{\infty}(\mathbf{s})$; 2: $\mathbf{z}' = f(\mathbf{s}) + Y$ where Y is two-dimension noise drawn by Eq.(1) with sensitivity hull $K(\mathcal{G})$; 3: return a location $\mathbf{z} \in S$ that is closest to \mathbf{z}' on the map.

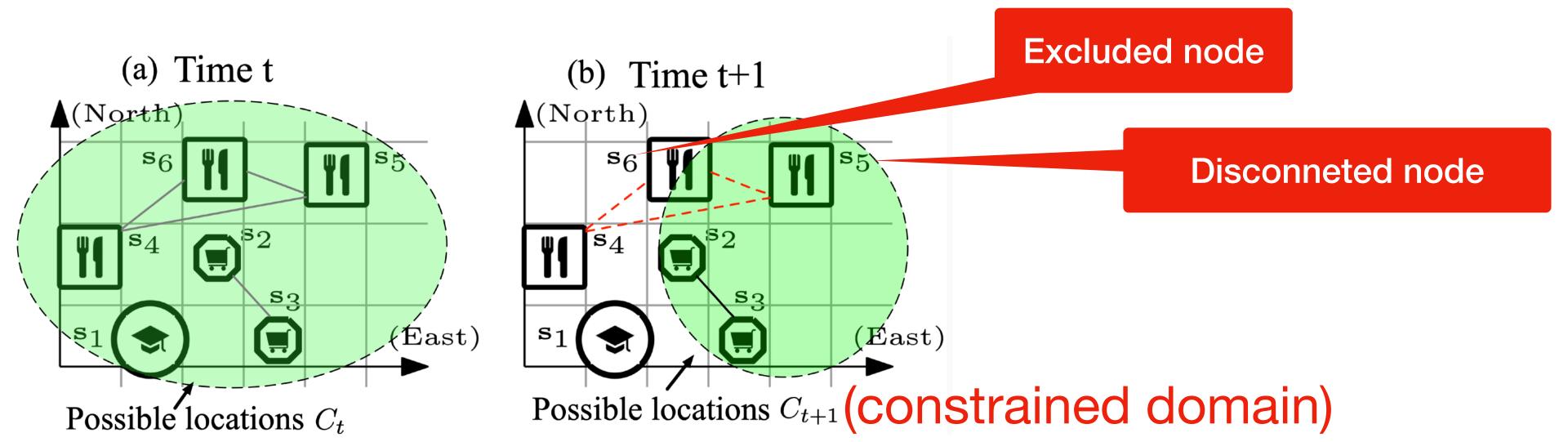
for all
$$\mathbf{s}' \in \mathcal{N}^{\infty}(\mathbf{s});$$

 $S_f^{\mathcal{G}}/\epsilon)]^T;$
in the map.

- Motivation — why we need a customizable and rigorous location privacy model.
- Our Solution: Policy Graph based Location Privacy (PGLP)
- PGLP for Location Trace Release challenges and countermeasures when using PGLP continuously.
- Experiments
- **Conclusion & Future work**

PGLP for Continuous Release Challenges

The user possible location set may change over time.



- Location Exposure under constrained domain: If the user is at s5, the attacker may be able to figure out her true loc.
- Not all of the disconnected node will lead to Location Exposure, which also depends on the mechanism.

PGLP for Continuous Release Countermeasure: Risk Detection and Policy Repair algorithm

Detect Isolated Node in a policy graph

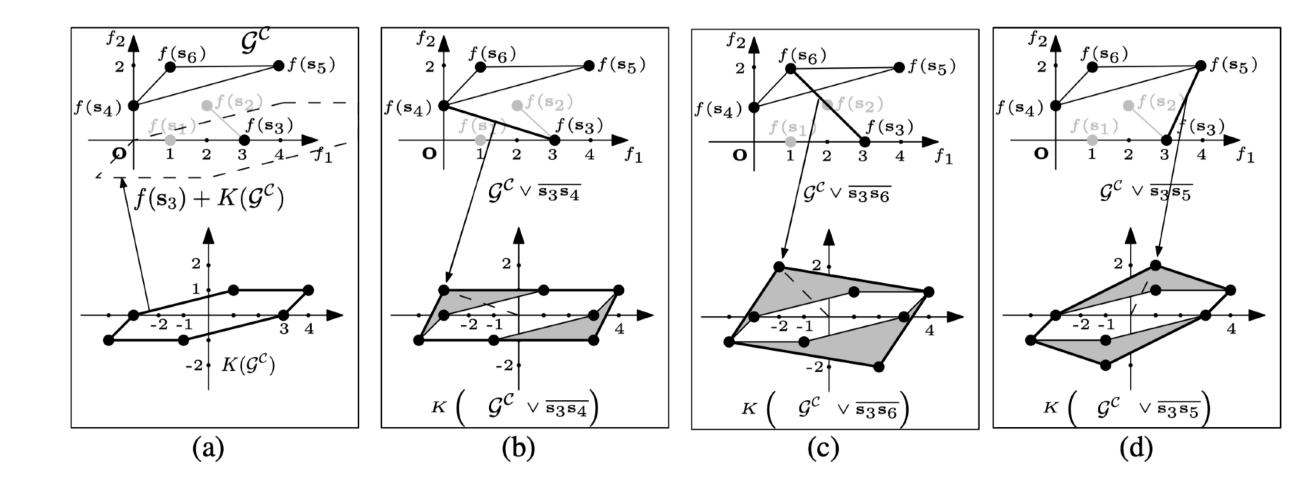
Isolated Node: the disconnected node that causes location exposure.

Algorithm 3 Finding Isolated Node

Require:
$$\mathcal{G}$$
, \mathcal{C} , disconnected node $\mathbf{s}_i \in \mathcal{C}$.
1: $\Delta f^{\mathcal{G}} = \bigvee_{\mathbf{s}_j \mathbf{s}_k \in \mathcal{E}^{\mathcal{C}}} (f(\mathbf{s}_j) - f(\mathbf{s}_k));$
2: $K(\mathcal{G}^{\mathcal{C}}) \leftarrow Conv(\Delta f^{\mathcal{G}});$
3: for all $\mathbf{s}_j \in \mathcal{C}$, $\mathbf{s}_j \neq \mathbf{s}_i$ do
4: if $Conv(\Delta f^{\mathcal{G}}, f(\mathbf{s}_j) - f(\mathbf{s}_i)) == K(\mathcal{G}^{\mathcal{C}})$ then
5: return false
6: end if
7: end for
8: return true

• Repair a policy graph with high utility.

Key idea: add an edge to protect the isolated node.



See our paper for more details.

PGLP for Continuous Release An end-to-end Location Trace release framework

- policy graph repair, and private location release mechanism.

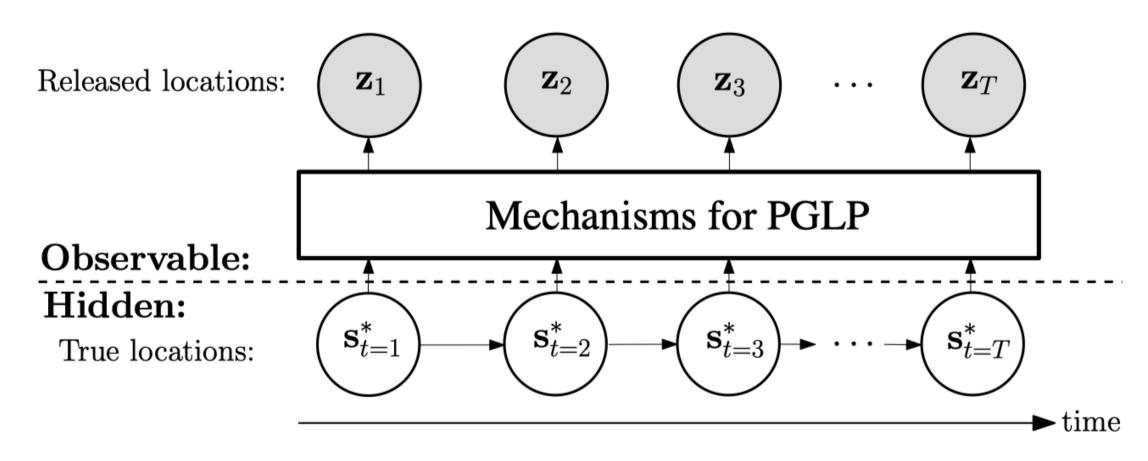


Fig. 5: Private location trace release via HMM.

Pipelines the calculation of constrained domains, isolated node detection,

Utilizing HMM model (assume transition and initial probabilities are known)

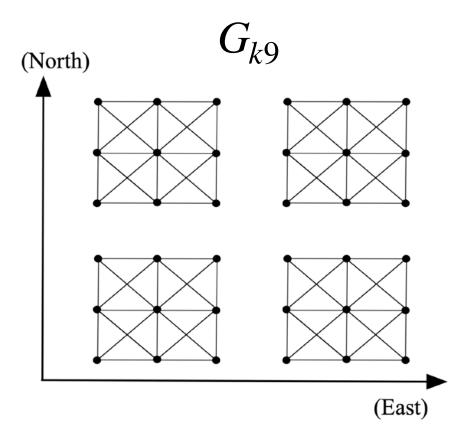
- Motivation — why we need a customizable and rigorous location privacy model.
- Our Solution: Policy Graph based Location Privacy (PGLP)
- PGLP for Location Trace Release - challenges and countermeasures when using PGLP continuously.
- Experiments
- **Conclusion & Future work**

Experiments

- How different location policy graphs affect the privacy-utility tradeoffs?
- Settings: •
 - Two types of location policy graphs:
 - "block-graph": G_{k9}, G_{k16}, G_{k25} suitable for weather apps
 - "category-graph": *G*_{poi}

suitable for location-based advertising

- Three types of Utilities \bullet
 - $E_{\rho\mu}$: Euclidean distance between noisy and true locations.
 - E_r : L0 distance between range queries on noisy and true locations, like "whether the released location is in the same region with the true location"
 - E_{poi} : L0 distance between category queries on noisy and true locations, like "whether the released location is the same category with the true location".

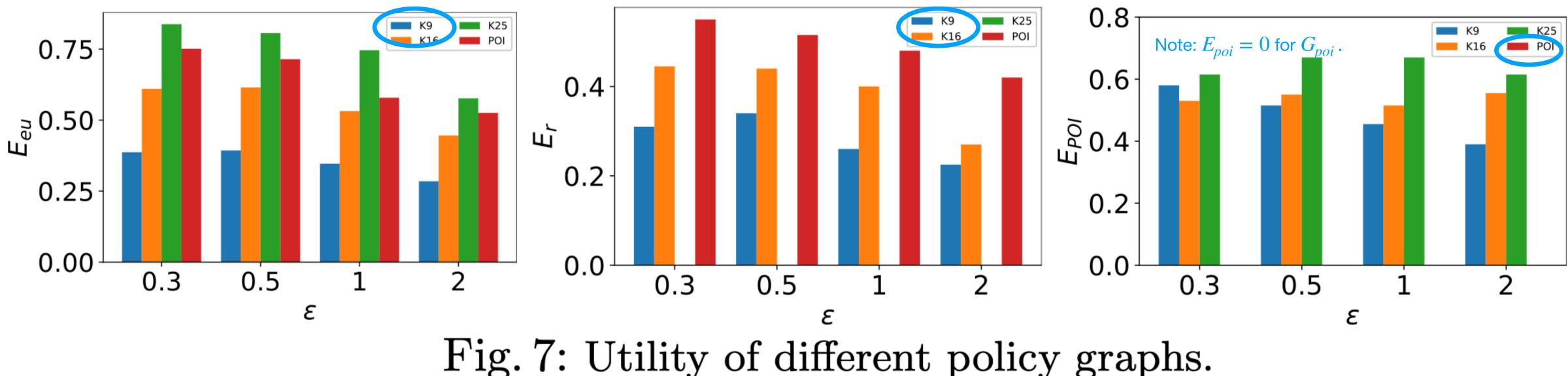


suitable for weather apps

 G_{poi} (North) **s**5 \mathbf{s}_6 VI s4 (East)

Experiments

Verified that we can flexibly design suitable policy w.r.t. the desired utility & privacy. • Observations: G_{k9} is best for E_{eu} and E_r ; G_{poi} is the best for E_{poi} .



(check the paper for more experimental results)

 E_{eu}, E_r, E_{poi} the lower the better.

- Motivation — why we need a customizable and rigorous location privacy model.
- Our Solution: Policy Graph based Location Privacy (PGLP)
- PGLP for Location Trace Release - challenges and countermeasures when using PGLP continuously.
- Experiments
- Conclusion & Future work

Conclusion & Future Work

- Takeaway
- Future directions
 - Design advanced mechanisms for PGLP
 - crowdsourcing.

PGLP provides a rich interface for privacy-utility tradeoff in location privacy.

Design optimal policy graphs for location-based applications, such as spatial